# Feedback control systems

### From CYPHYNETS

(Difference between revisions)

Line 10: | Line 10: | ||

A control system is given by <math>\frac{dx}{dt} = Ax + Bu</math> | A control system is given by <math>\frac{dx}{dt} = Ax + Bu</math> | ||

+ | |||

+ | |||

+ | For testing Math | ||

+ | |||

+ | These are for testing Purpose by Nasir:- | ||

+ | |||

+ | <math>\int_a^x \!\!\!\int_a^s f(y)\,dy\,ds | ||

+ | = \int_a^x f(y)(x-y)\,dy</math> | ||

+ | |||

+ | <math>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n} | ||

+ | {3^m\left(m\,3^n+n\,3^m\right)}</math> | ||

+ | |||

+ | <math>u'' + p(x)u' + q(x)u=f(x),\quad x>a</math> | ||

+ | |||

+ | <math>\phi_n(\kappa) = | ||

+ | \frac{1}{4\pi^2\kappa^2} \int_0^\infty | ||

+ | \frac{\sin(\kappa R)}{\kappa R} | ||

+ | \frac{\partial}{\partial R} | ||

+ | \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR</math> | ||

+ | |||

+ | <math>\phi_n(\kappa) = | ||

+ | 0.033C_n^2\kappa^{-11/3},\quad | ||

+ | \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}</math> | ||

+ | |||

+ | <math> | ||

+ | f(x) = | ||

+ | \begin{cases} | ||

+ | 1 & -1 \le x < 0 \\ | ||

+ | \frac{1}{2} & x = 0 \\ | ||

+ | 1 - x^2 & \mbox{otherwise} | ||

+ | \end{cases} | ||

+ | </math> | ||

+ | |||

+ | <math>{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) | ||

+ | = \sum_{n=0}^\infty | ||

+ | \frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n} | ||

+ | \frac{z^n}{n!}</math> | ||

+ | |||

+ | <math> \frac {a}{b}\ \tfrac {a}{b} </math> |

## Revision as of 16:43, 4 July 2009

We meet regularly on Thursdays at 10am to discuss various topics of feedback control and modeling of physical systems.

# Participants

- Asad Abidi
- Ishtiaq Maqsood
- Hassan Mohy-ud-Din
- Suleman Sami Qazi
- Abubakr Muhammad

A control system is given by

For testing Math

These are for testing Purpose by Nasir:-