# Feedback control systems

(Difference between revisions)
 Revision as of 16:43, 4 July 2009 (view source)← Previous diff Revision as of 09:54, 9 July 2009 (view source)Next diff → Line 7: Line 7: * Hassan Mohy-ud-Din * Hassan Mohy-ud-Din * Suleman Sami Qazi * Suleman Sami Qazi + * Abdul Rehman Javed + * Mohammad Ali Khan + * Zahaib Akhtar + * Khubaib Arshad * Abubakr Muhammad * Abubakr Muhammad - A control system is given by $\frac{dx}{dt} = Ax + Bu$ + This page is under construction. - + - + - For testing Math + - + - These are for testing Purpose by Nasir:- + - + - $\int_a^x \!\!\!\int_a^s f(y)\,dy\,ds + - = \int_a^x f(y)(x-y)\,dy$ + - + - $\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n} + - {3^m\left(m\,3^n+n\,3^m\right)}$ + - + - $u'' + p(x)u' + q(x)u=f(x),\quad x>a$ + - + - $\phi_n(\kappa) = + - \frac{1}{4\pi^2\kappa^2} \int_0^\infty + - \frac{\sin(\kappa R)}{\kappa R} + - \frac{\partial}{\partial R} + - \left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR$ + - + - $\phi_n(\kappa) = + - 0.033C_n^2\kappa^{-11/3},\quad + - \frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}$ + - + - $+ - f(x) = + - \begin{cases} + - 1 & -1 \le x < 0 \\ + - \frac{1}{2} & x = 0 \\ + - 1 - x^2 & \mbox{otherwise} + - \end{cases} + -$ + - + - ${}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z) + - = \sum_{n=0}^\infty + - \frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n} + - \frac{z^n}{n!}$ + - + - $\frac {a}{b}\ \tfrac {a}{b}$ +

## Revision as of 09:54, 9 July 2009

We meet regularly on Thursdays at 10am to discuss various topics of feedback control and modeling of physical systems.

# Participants

• Ishtiaq Maqsood
• Hassan Mohy-ud-Din
• Suleman Sami Qazi
• Abdul Rehman Javed