Feedback control systems

From CYPHYNETS

(Difference between revisions)
Jump to: navigation, search
Line 7: Line 7:
* Hassan Mohy-ud-Din
* Hassan Mohy-ud-Din
* Suleman Sami Qazi  
* Suleman Sami Qazi  
 +
* Abdul Rehman Javed
 +
* Mohammad Ali Khan
 +
* Zahaib Akhtar
 +
* Khubaib Arshad
* Abubakr Muhammad
* Abubakr Muhammad
-
A control system is given by <math>\frac{dx}{dt} = Ax + Bu</math>
+
This page is under construction.
-
 
+
-
 
+
-
For testing Math
+
-
 
+
-
These are for testing Purpose by Nasir:-
+
-
 
+
-
<math>\int_a^x \!\!\!\int_a^s f(y)\,dy\,ds
+
-
= \int_a^x f(y)(x-y)\,dy</math>
+
-
 
+
-
<math>\sum_{m=1}^\infty\sum_{n=1}^\infty\frac{m^2\,n}
+
-
{3^m\left(m\,3^n+n\,3^m\right)}</math>
+
-
 
+
-
<math>u'' + p(x)u' + q(x)u=f(x),\quad x>a</math>
+
-
 
+
-
<math>\phi_n(\kappa) =
+
-
\frac{1}{4\pi^2\kappa^2} \int_0^\infty
+
-
\frac{\sin(\kappa R)}{\kappa R}
+
-
\frac{\partial}{\partial R}
+
-
\left[R^2\frac{\partial D_n(R)}{\partial R}\right]\,dR</math>
+
-
 
+
-
<math>\phi_n(\kappa) =
+
-
0.033C_n^2\kappa^{-11/3},\quad
+
-
\frac{1}{L_0}\ll\kappa\ll\frac{1}{l_0}</math>
+
-
 
+
-
<math>
+
-
f(x) =
+
-
\begin{cases}
+
-
1 & -1 \le x < 0 \\
+
-
\frac{1}{2} & x = 0 \\
+
-
1 - x^2 & \mbox{otherwise}
+
-
\end{cases}
+
-
</math>
+
-
 
+
-
<math>{}_pF_q(a_1,\dots,a_p;c_1,\dots,c_q;z)
+
-
= \sum_{n=0}^\infty
+
-
\frac{(a_1)_n\cdots(a_p)_n}{(c_1)_n\cdots(c_q)_n}
+
-
\frac{z^n}{n!}</math>
+
-
 
+
-
<math> \frac {a}{b}\  \tfrac {a}{b} </math>
+

Revision as of 09:54, 9 July 2009

We meet regularly on Thursdays at 10am to discuss various topics of feedback control and modeling of physical systems.

Participants

  • Asad Abidi
  • Ishtiaq Maqsood
  • Hassan Mohy-ud-Din
  • Suleman Sami Qazi
  • Abdul Rehman Javed
  • Mohammad Ali Khan
  • Zahaib Akhtar
  • Khubaib Arshad
  • Abubakr Muhammad

This page is under construction.

Personal tools