Jump to: navigation, search
CMPE-633B: Robot Kinematics, Dynamics and Control
Fall 2011


Dr Abubakr Muhammad, Assistant Professor of Electrical Engineering

Email: abubakr [at]

Office: Room 9-309A, 3rd Floor, SSE Bldg

Office Hours:

Teaching assistant.

Course Details

Year: 2011-12

Semester: Fall

Category: Grad

Credits: 3

Elective course for electrical engineering, computer engineering and computer science majors

Course Website:

Course Description


A research-methods based course to study advanced topics in robotics and control system design with emphasis on field robotics, unmanned aerial and ground vehicles, planning algorithms, autonomous systems, telerobotics, Human Robot Interaction (HRI) and other related areas. The course prepares students to do independent work at the frontiers of robotics and control research.

This year

This course introduces essential concepts and analytical tools to understand the dynamics and associated control systems for common robot tasks such as manipulation, grasping and locomotion. Topics include forward and inverse kinematics; path planning, collision avoidance and trajectory generation; robot body and actuator dynamics; sensory feedback and trajectory tracking; stability, disturbance rejection and force control.


  • Introduce mathematical foundation of robot motion and control in a general setting.
  • Introduce ideas of configuration space, path planning and trajectory generation.
  • Teach use of geometric and dynamical models in robotics.
  • Highlight control theoretic issues in trajectory planning and sensory feedback.
  • Introduce practical applications of robotics in mobile manipulation tasks, tele-operation, automated assembly, manufacturing, home and service industry.


  • Grads. CMPE435 (Robotics) OR CMPE432 (Feedback design) OR CMPE-633 (Fall 2011) OR permission of instructor
  • Undergrads. EE361 (Feedback control) AND permission of instructor

Text book

The course will be taught from a combination of the following textbooks.

Primary Texts

Secondary Texts


Similar Courses

Stanford: Introduction to Robotics.

Grading Scheme

  • Assignments: 20%
  • Midterm: 20%
  • Final Exam: 30%
  • Group Project: 30%
    • Proposal. 10%
    • Report. 20%
    • Presentation. 20%
    • Demo/working. 50%

Course Delivery Method

Lectures. Labs


Week 1. Sept 5 Start of classes Sept 7; Introduction to robotic systems; rigid body motions and transformations.

Lec 1. Introduction; robotics and autonomous systems;

Week 2. Sept 12 Drop deadline Sept 14; Classes cancelled due to Dengue outbreak Lec 2. workspaces; configuration spaces; planning algorithms;
Week 3. Sept 19 No classes due to Dengue Outbreak.
Week 4.Sept 26 Classes resumed; Semester pushed back by one week Lec 3.
Week 5. Oct 3 Forward kinematics; inverse kinematics;

Lec 4.

Lec 5.

Week 6. Oct 10

Lec 6.

Lec 7.

Week 7. Oct 17 Lec 8.

Lec 9.

Week 8. Oct 24

Lec 10.

Lec 11.

Week 9. Oct 31

Mobile kinematics (Invited Lectures. Dr Karsten Berns) Lec 15.

Lec 16.

Week 10. Nov 7 Eid-ul-Azha holidays Nov 7-9;

Roadmaps for trajectory generation; trajectory planning. Lec 18.

Week 11. Nov 14 Midterms

Lec 19.

Lec 20.

Week 12. Nov 21 Velocity kinematics.

Lec 21.

Lec 22.

Week 13. Nov 28

Lec 23.

Lec 24.

Week 14. Dec 5 Ashura holidays Dec 5-6; Lec 25.
Week 15. Dec 12 Rigid body dynamics; Euler-Lagrange equations; kinetic and potential energy.

Lec 26.

Lec 27.

Week 16. Dec 19 Last day of classes Dec 20; Reading/review Dec 21-24; Lec 28.
Week 17. Dec 26 Final Exams Dec 26-Jan 02; Grade submission deadline Jan 13; Nonlinear multivariable control problem; stability and tracking; inverse dynamics; passitivity based control; robust and adaptive control.

Project Ideas

You can choose a project covering one of the following themes using help from literature reported in books, conferences and journals.


Study, formulate and simulate the kinematics, dynamics and control of a robotic mechanism. e.g.

  • Underwater robots
  • Hopping robots
  • Climbing robots
  • Legged robots
  • Flapping wing aerial robots
  • Flexible needles for robotic surgery


Study a technique underpinning robot modeling and control systems.

  • Visual servoing
  • Force feedback / haptics
  • Stabilization of bipedal and otehr types of legged robots
  • Under-actuated systems
  • Kinodynamic motion planning
  • Control issues in wheeled robots
  • Dynamical models for autonomous driving and road conditions


Please take help from the following journals and conferences.

  • IEEE Transactions on Robotics
  • International Journal of Robotics Research (IJRR)
  • Robotics, Science & Systems Conference (RSS)
  • IEEE International Conference on Robotics and Automation (ICRA)
  • IEEE International Conference on Intelligent Robotics and Systems (IROS)
Personal tools