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Abstract

This tutorial serves as an introduction to the basic ideas in sub-Riemannian geometry. The
discussion emphasizes the relevance of this subject from a control theoretic point of view. Some
examples of sub-Riemannian geometries such as the Heisenberg geometry and other Carnot
groups have also been given.

1 Introduction

Sub-Riemannian geometry is a relatively young area in Mathematics [2]. The geometry is defined
on a manifold M , on which every trajectory evolves tangent to a distribution H of the tangent
bundle TM . Riemannian geometry is the special case in which H = TM . Such trajectories are
called horizontal curves. A metric, known as the sub-Riemannian metric, is defined as an inner
product on the distribution. This metric lets us define the lengths and energies of horizontal
curves. The main theme of sub-Riemannian geometry is to study the locally length minimizing
horizontal curves or geodesics. The most surprising result of sub-Riemannian geometry is the
existence of abnormal geodesics that do not satisfy the normal geodesic equations [2, 3]. In this
tutorial we discuss some basic concepts of sub-Riemannian geometries and their importance in
the study of control systems and geometric mechanics. This point of view is important for the
study of many classical as well as quantum systems. Researchers have studied sub-Riemannian
geodesics in Lie groups and have found them useful for the efficient design of quantum logic
gates using coherence transfers in nuclear magnetic resonance (NMR) or quantum evolutions
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in ion trap based quantum computers. [5]. Moreover, sub-Riemannian geometry has a deep
connection with optimal control of dynamical systems and Pontryagin’s maximum principle [4].
This makes it an important subject and needs to be introduced to researchers outside mainstream
mathematics. It is the author’s hope to provide here an accessible introduction to this subject.
We refer the more curious reader to the splendid text of Montgomery [2] for more details.

2 Geometric Theory of Control Systems

In this section we give an overview of the control problem for systems whose configuration
spaces are manifolds. Let M be a manifold that describes the configuration space of a certain
dynamical system, also called the phase or state space. Let TM denote its tangent bundle.
A finite dimensional nonlinear control systems on a smooth n-dimensional manifold M is a
differential equation of the form

ẋ(t) = f(x, u), x(t0) = x0, (1)

where x ∈ M , u(t) is a time dependent map from R+ to a constraint set Ω ⊂ Rm, and f :
M ×Rm → TM is a C∞ (smooth) or Cω (analytic) such that for each fixed u, f(., u) is a vector
field on M . The map u is assumed to be piecewise smooth or piecewise analytic. Such maps are
called admissible and the space U of all such maps is called the set of admissible controls.

2.1 Controllability and Accessibility

The system in Equation 1 is said to be controllable if for any two points x0 and xf in M there
exists an admissible control u ∈ U defined on some time interval [t0, tf ] such that the system
with initial condition x0 reaches the state xf at time tf . The notion of controllability is stronger
than the notion of reachability also known as accessibility. The reachable set is roughly defined
as the set of points that may be reached by the system by travelling on trajectories from the
initial point in a time at most T . By fixing T , the notion of controllability has been weakened as
controllability would require the reachable set to be the entire manifold. More precisely, given
x0 ∈ M and V a neighborhood of x0, we define RV (x0, t) to be the set of all x ∈ M for which
there exists a control u ∈ U such that the trajectory of the system belongs to V for all times
t ∈ [t0, t], with x(0) = x0 and x(t) = x. The reachable set at time tf is defined

RV (x0, tf ) =
⋃

t0≤t≤tf

RV (x0, t).

A control system is locally accessible if given any x0 ∈M , the setRV (x0, tf ) contains a nonempty
open set of M for all neighborhoods V of x0 and for every tf > 0. A system is locally strongly
accessible if given any x0 ∈ M , then for any neighborhood V of x0, RV (x0, tf ) contains a
nonempty open set of M for any tf > 0 sufficiently small. In this terminology, a system is
controllable if given any x0 ∈M , ⋃

0≤tf <∞

RV (x0, tf ) = M.
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2.2 Controllability of Affine Control Systems

For the purpose of studying quantum systems, of special interest are a class of control systems
that can be described by differential equations of the form,

ẋ(t) = X0(x) +
m∑

i=1

ui(t)Xi(x), (2)

where each Xi is a vector field on M and the m-tuple u(u1, u2, . . . , um) describes an admissible
control u : [t0, tf ] → Rm. This class of control systems are known as affine control systems.
The vector field X0 is called the drift term whereas the Xi terms are called the control vector
fields. We now study the controllability and accessibility conditions for affine control systems.
It should be noted that the reachable sets described in the previous paragraphs are hard to
compute. Therefore it would be helpful to derive (or know of) a simpler and computable test of
controllability or accessibility. It turns out that for affine control systems of the form in Equation
(2), such a test does exist [?]. The underlying method makes use of the Lie algebra generated
by the set of vector fields {X0, X1, . . . , Xm}.

We now recall some basic definitions from the theory of Lie algebras. For more details see [?].
A Lie algebra is a real vector space V with a multiplication operation [·, ·] : V × V → V that
satisfies the following properties.

1. Skew Commutativity: [A,B] = −[B,A] for any A,B ∈ V .

2. Bilinearity: If A,B,C ∈ V and c ∈ R then

[A,B + C] = [A,B] + [A,C]
. [A+B,C] = [A,C] + [B,C]

c[A,B] = [cA,B] = [A, cB]

3. Jacobi Identity: [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 for all A,B,C ∈ V .

In the case of vector fields, the multiplication operation is the familiar Lie bracket given by

[X,Y ] = Y X −XY.

In more familiar terms, let the two vector fields be expressed in local coordinates as

X(x) =
n∑

i=1

ai(x1, . . . , xn)
∂

∂xi
, Y (x) =

n∑
i=1

bi(x1, . . . , xn)
∂

∂xi
,

then their Lie bracket is given by

[X,Y ](x) =
n∑

i=1

ci(x1, . . . , xn)
∂

∂xi
,where ci =

n∑
j=1

∂ai

∂xj
bj −

∂bi
∂xj

aj .
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In the case of linear vector fields, the Lie bracket is simply the matrix commutation of the two
matrices that define the vector fields. Let X = Ax and Y = Bx where A,B ∈ Rn×n then

[X,Y ](x) = (AB −BA)x.

Now, let L be the smallest Lie algebra of vector fields on M that contains X0, X1, . . . Xm,
i.e., the set of vector fields generated by all iterated Lie brackets of the form X0, X1, . . . , Xm,
[X0, X1], [X1, X2], . . . , [X0, [X1, X2]], [X0, [X2, X3]], . . . , and so on. This set is also referred to
as their Lie Hull. When these vector fields define an affine control system, L is also called the
accessibility Lie algebra of the system. At each point x ∈M we define a distribution or a plane
in the tangent space as

L(x) = {spanZ(x) : Z ∈ L} ⊆ TxM.

Similarly, let L0 be the smallest Lie algebra of vector field on M that contain X1, . . . , Xm

(excluding the drift term X0) and that satisfies the additional condition that [X0, Z] ∈ L0 for
all Z ∈ L0. Let

L0(x) = {spanZ(x) : Z ∈ L0} ⊆ L(x).

We now summarize the most important result for affine control systems [?].

Theorem 2.1 For the affine control system described by Equation 2 we have the following con-
ditions.

1. Local accessibility. The system has local accessibility if and only if dimL(x) = dim(TxM) =
n for all x ∈M .

2. Local strong accessibility. The system has local strong accessibility if and only if dimL0(x) =
n for all x ∈M .

3. Controllability (Chow’s Theorem). If the system is locally accessible and drift-less, i.e.
X0 = 0 then the system is controllable.

These spanning conditions are commonly known as the Lie Algebra Rank Conditions (LARC).
For the special yet important case of linear systems the weaker notion of accessibility does imply
controllability as demonstrated below. Let the system be given by

ẋ = Ax+
m∑

i=1

biui,

where A ∈ Rn×n and bi ∈ Rn. The tangent space TxRn ' Rn. Let us compute the Lie algebras L
and L0 for this system. Here Ax is the drift term whereas the constant vectors bi are the control
vector fields. In the course of computation, we ignore the iterated brackets that generate 0 or
those that lie in the span of previously computed brackets. The Lie bracket [bi, Ax] = Abi, while
[bi, bj ] = 0. Continuing the Lie bracket computation we have [[bi, Ax], Ax] = [Abi, Ax] = A2bi,
[[[bi, Ax], Ax], Ax] = A3bi and so on. By the Cayley-Hamilton theorem each An is linearly
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dependent on A0, A1, . . . , An−1, therefore nothing new is produced in iterated brackets after
obtaining An−1bi. It is easy to see that at each x ∈ Rn

L0(x) = L(x) = span{b1, b2, . . . , bm, Ab1, Ab2, . . . Abm, . . . An−1b1, A
n−1b2 . . . , A

n−1bm}.

If we stack the column vectors bi’s in a matrix B = [b1, b2, . . . , bm] ∈ Rn×m, then the spanning
test of the accessibility Lie algebra is equivalent to the classical controllability condition on the
rank of the matrix

C = [B,AB,A2B, . . . , An−1B].

We say that the linear system

ẋ = Ax+
m∑

i=1

biui = Ax+Bu,

is controllable if rank(C) = n. It is clear that the method of studying controllability or accessibil-
ity by Lie algebras is much simpler than direct computation of reachable sets. We will make use
of this method at several occasions, especially for verifying the existence of geodesics in certain
sub-Riemannian geometries.

3 Main Ideas in Sub-Riemannian Geometry

In this section, we give a short introduction to the area of sub-Riemannian geometry. We follow
closely the treatment given in [2], which can be referred for a comprehensive introduction to this
subject. Informally, a sub-Riemannian geometry is a type of geometry in which the trajectories
evolve tangent to a horizontal plane inside the tangent plane only. The main theme of this subject
is the study of geodesics arising in such a geometry. In particular, the existence of minimizing
geodesics that do not satisfy the so-called normal geodesic equations is an outstanding result of
this subject. Such singular or abnormal geodesics are not found in the more familiar Riemannian
geometry. The existence of such geodesics is of extreme importance to control theory, where
such investigations have far reaching applications in many areas such as robotics, geometric
mechanics and quantum control. From a purely mathematical point of view, sub-Riemannian
geometry is a more generic way of looking at Riemannian geometry, which arises as a special
case in the sub-Riemannian setting. Together, this theoretical generalization and its various
applications make sub-Riemannian geometry an important field of study. It is also referred to
as the Carnot-Caratheodory geometry in the literature.

3.1 Metrics and Lengths

A sub-Riemannian geometry is fully described by the following triplet.

1. Manifold: A manifold Q of dimension n, with the usual smooth or differentiable structure
on it. In particular TpQ denotes the tangent space at a point p ∈ Q and TQ ∪p∈M TpQ is
the tangent bundle on Q.
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2. Distribution: A distribution H ⊆ TQ, defined as a linear sub-bundle of TQ. In other
workds, at each point p ∈ Q, a k-plane Hp of dimension k ≤ n spans a linear subspace
of TpQ. The collection of all such k-planes is the distribution H. The distribution is also
called the horizontal space.

3. Metric: A metric or an inner product < v,w >p on the distribution between any two vectors
v, w ∈ Hp.

The usual Riemannian geometry is a special case in this setting when H = TM and the metric
corresponds to the Riemannian metric on the manifold. It is in this sense that sub-Riemannian
geometry is a generalization of the standard Riemannian geometry. Let γ : [0, T ] → Q be a
horizontal curve. The length of this curve is given by

l(γ) =
∫ T

0

‖γ̇(t)‖2dt,

where ‖γ̇‖ < γ̇(t), γ̇(t) >1/2. The distance between two points q1, q2 ∈ Q is given by

d(q1, q2) := inf
γ
l(γ)

where the inf is taken over all absolutely continuous curves joining q1 to q2. Note that this
is a larger class of curves than that of all smooth curves. The curve γ∗ corresponding to the
inf is called the minimizing geodesic. Since, our aim is to study the geodesics, i.e. locally
length minimizing horizontal curves in this geometry, we take a closer look into what it means
to minimize the length (locally). First note, that the energy associated with the motion on a
curve γ is given by

E(γ) =
∫ T

0

1
2
‖γ̇‖2.

If we minimize this energy, the length is also minimized. To see this we present the standard
argument from Riemannian geometry [?] as follows. Write the length as,

l(γ) =
∫

1.‖γ̇‖dt ≤
√
T

√∫
‖γ̇‖2dt =

√
2E(γ)T ,

which is obtained by the Cauchy-Schwartz inequality. It is also worth noting that equality is
achieved for constant speed curves only (again by the Cauchy-Schwartz inequality).

It is also important to understand how a metric is properly defined in the sub-Riemannian
geometry. In the usual Riemannian geometry, the Riemannian metric is defined by a contra-
variant 2-tensor, i.e. a section of the bundle S2(T ∗Q), where T ∗Q denotes the cotangent bundle
of the manifold Q and S2(T ∗Q) is the symmetrization of T ∗Q ⊗ T ∗Q. This is not applicable
in sub-Riemannian geometry because the metric defined above is defined for any two co-vectors
in the cotangent space, whereas in sub-Riemannian geometry the co-vectors are confined to a
distribution H ⊂ TQ. We therefore use the metric as follows.

Definition 3.1 A sub-Riemannian metric is defined as a contra-variant symmetric 2-tensor,
i.e. a section of the bundle S2(TQ), whose rank k < dim(Q) is the rank of the distribution.
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Note that because of the rank deficiency, this cannot Hence cannot be inverted to get the
Riemannian metric described above. This metric is also called a cometric. Let us define a
bilinear form � ·, · �: T ∗Q⊗ T ∗Q → R, as an inner product on co-vectors. This bilinear form
serves as our cometric and behaves in the following way. The cometric induces a symmetric map
β = β∗ : T ∗Q → TQT ∗∗Q by w1(β(w2)) =� w1, w2 � for w1, w2 ∈ T ∗Q. This map β lets us
go back and forth between TQ and T ∗Q.

To see where this cometric comes from, let us consider a particular sub-Riemannian geometry,
defined using a manifold Q, H ⊂ TQ and the inner product on H, < ·, · >. The map β is
uniquely determined as follows. First note that the the image of the cometric must be the entire
distribution, i.e. Im(βq) = Hq for q ∈ Q. Therefore, the inner product < ·, · > on H and β are
related by p(v) =< βq(p), v >, where v ∈ H and p ∈ T ∗q Q. This gives us a unique description for
the cometric. Conversely, it can be shown that any cometric gives a sub-Riemannian geometry
H and < ·, · >.

It is important to realize that the sub-Riemannian metric for a particular distribution on the
manifold can also be described as the metric associated with a control system of the form given
in Equation 2, with X0 = 0. Let H be the distribution locally spanned by {X1, X2, . . . , Xm}.
At a point x ∈ Q and any Z ∈ TxQ, we set

gx(Z) = inf{u2
1 + . . .+ u2

m : u1X1 + . . .+ umXm = Z}.

then gx is a positive definite quadratic form defined locally on the subspaceHx = span{X1(x), . . . , Xm(x)} ⊆
TxQ. If Z /∈ Hx then we set gx(Z) = ∞. To see why this is a proper definition, consider the map
σx : Rm → TxQ given by (ui, . . . , um) 7→ u1X1(x) + . . .+ umXm(x). Then the restriction of σx

to kerσ⊥x is a linear isomorphism onto Hx. Now construct an inverse mapping ρx : Hx → kerσ⊥x
by

gx(Z) =
{
‖ρx(Z)‖2, if Z ∈ Hx;
+∞, otherwise.

By this construction, we say that g is the sub-Riemannian metric associated with the affine
control system

ẋ(t) =
m∑

i=1

ui(t)Xi(x), x ∈ Q,

We now have an understanding of metrics and lengths on sub-Riemannian manifolds and can
study the geodesics as length minimizing horizontal curves.

3.2 Normal Geodesics and Hamiltonian dynamics

Questions about the existence of geodesics between two arbitrary points of a manifold in a sub-
Riemannian geometry can be answered by using the Lie algebraic methods described in Section
2. Once we get a controllability certificate, we can look for geodesics in the geometry. In the
following paragraphs, we explore role of Hamiltonian methods in obtaining these geodesics.
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Let us define the Hamiltonian as

H(q, p) =
1
2
� p, p�,

where q ∈ Q and p ∈ T ∗q Q. This is also known as the sub-Riemannian Hamiltonian or the kinetic
energy of the system. For a horizontal curve γ(t), and for some p ∈ T ∗γ(t)Q, let γ̇(t) = βγ(t)(p).
Then

H(q, p) =
1
2
‖γ̇(t)‖2.

In this way the β uniquely determines the Hamiltonian and the Hamiltonian uniquely determines
the sub-Riemannian structure by polarization. To compute the Hamiltonian, we set up a local
frame {Xa}, a = 1 . . . k of vector fields on H. For each X ∈ H define a momentum function
PX : T ∗Q → R by PX(q, p) = p(X(q)). In local coordinates let Xa =

∑
Xi

a
∂

∂xi , and its
momentum function be given by Pa(x, p) =

∑
Xi

a(x)pi where pi = P∂/∂xi . Notice that (xi, pi)
give canonical coordinates on the cotangent bundle T ∗Q.

Let gab(q) =< Xa(q), Xb(q) >q be a matric defined by the inner product on H. Let gab(q) be
the k × k matrix inverse of gab(q). It is easy to see that

H(q, p) =
1
2

∑
gab(q)Pa(q, p)Pb(q, p).

If {Xa}make an orthonormal frame onH, relative to the sub-Riemannian metric, thenH(p, q) =
1
2

∑
P 2

a . We can now employ the standard techniques from Hamiltonian dynamics to get, what
are known as the normal geodesic equations.

ẋi =
∂H

∂pi
, ṗi = −∂H

∂xi
.

We now give the normal geodesics theorem.

Theorem 3.1 (Normal geodesics theorem) Let (γ(t), p(t)) be a solution to the Hamilton’s
equations on T ∗Q and let γ(t) be its projection to Q. Then every sufficiently short arc of γ is
a minimizing sub-Riemannian geodesic. Moreover, γ is the unique minimizing geodesic joining
the endpoints.

As one can anticipate from the term normal, there may exist abnormal or singular geodesics in
certain sub-Riemannian geometries that do not satisfy the normal geodesics equations. We will
describe these abnormal geodesics later. First let us try to give a heuristic proof of the above
theorem. Let us pick a Riemannian metric g that is compatible with the sub-Riemannian metric
< ., . > on H. Now, split g = gH ⊕ gV , where V is orthogonal to H with respect to g. Now form
a family of Riemannian metrics

gλ = gH ⊕ λ2gV , λ→∞,

all compatible with the Riemannian metric g. Form an orthonormal frame {Xa} for H and
{(1/λ)Xi} for V. We can then obtain a family of Hamiltonians

Hλ =
1
2
(
∑

P 2
a +

1
λ2

∑
P 2

i ).
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Now by letting λ → ∞, one should expect that Hλ tends to a Hamiltonian H governing the
normal geodesic equations. This proof however does not work for the case of geometries where
abnormal geodesics may also be present. The actual proof of the theorem has been omitted for
the sake of brevity, and has been given in detail in [2].

4 Examples

In this section we give several examples of sub-Riemannian geometries and study their properties
using the basic ideas developed above.

4.1 Heisenberg Geometry

To elaborate the abstract setting of sub-Riemannian geometry in this section, let us analyze in
the Heisenberg Geometry. Here Q = R3. Consider the 1-form on R3 given by

θ(x, y, z) = dz − 1
2
(xdy − ydx),

The distribution corresponding to this annihilating form is H(x,y,z) = {θ(x, y, z) = 0}. For
any two vectors v, w ∈ H(x, y, z) we define the Sub-Riemannian metric on H as < v,w >=
v1w1 + v2w2. In other words

ds =
√
dx2 + dy2,

and hence movement in the z direction does not contribute towards the length of a geodesic.
Now construct an orthonormal frame for H at (x, y, z) is given by

X =
∂

∂x
− 1

2
y
∂

∂z
, Y =

∂

∂y
+

1
2
x
∂

∂z
,

Now compute the Lie bracket. We find that

[X,Y ] = Z =
∂

∂z
, [X,Z] = [Y, Z] = 0.

It is easy to see that X,Y and [X,Y ] span the whole tangent bundle. Therefore by Theorem 2.1
any two points in R3 can be connected by a horizontal curve in the Heisenberg geometry. Now
compute the momentum functions

PX = px −
1
2
ypz, PY = py +

1
2
xpz,
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where (x, y, z, px, py, pz) give coordinates on T ∗Q = R3 ⊕ R3. The Hamiltonian is given by
H = 1

2 (P 2
X + P 2

Y ). From this we Hamilton’s equations.

ẋ = PX ,

ṖX = −PZPY ,

ẏ = PY ,

ṖY = PZPX ,

ż = −1
2
yPX +

1
2
xPY ,

ṖZ = 0.

So x, y, PX , PY evolve independently of z, and with a constant PZ . Integrating the rest of the
equations give the geodesics. Some geodesics are depicted in Figure ??. A detailed description
of the Heisenberg geodesics is given in [?, ?]. Without much detail, it is worth noting that
the Hiesenberg sphere, i.e. all points at unit sub-Riemannian length is shaped like an apple.
Also note that the sphere is singular at z-axis. All points along z-axis are conjugate points to
the origin. As mentioned above, the vector fields X,Y and Z = [X,Y ] make a basis for the
tangent bundle. In fact, they generate a Lie algebra called the Heisenberg algebra H3. Since
[X,Z] = 0, [Y, Z] = 0, [[X,Y ], Y ]] = 0 and so on, we have a nilpotent Lie algebra of depth 2. The
exponential map provides a diffeomorphism between the nilpotent Lie algebra and its unique
simply connected Lie group. At identity,

γv(t) = exp(t(v1, v2, v3)) = (tv1, tv2, tv3)

Therefore Heisenberg algebra gives the Heisenberg group with the group law

(x1, y1, z1).(x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 +
1
2
(x1y2 − x2y1))

Also, d
dt |t=0(q.γv(t)) = v1X(q) + v2Y (q) + v3Z(q). So X,Y, Z make a basis for the space of

left-invariant vector fields on the group. Finally, H = span{X,Y } is also left-invariant with
respect to the group law.

4.2 Carnot Groups

These observations are not specific to the Heisenberg group only. Let G be a Lie group and
L be its Lie algebra, i.e. the space of left invariant vector fields on the group. Take V ⊂ L
a left-invariant distribution. If V Lie generates L, then we have the same condition as the
bracket-generating condition of Chow’s Theorem. The restriction to V of an inner product on L
gives a sub-Riemannian metric. The action on G by left translations is an action by isometries.
Examples of such Lie groups are the so called Carnot groups. We have

L = V ⊕ V2 ⊕ . . .⊕ Vr,

where Vi+j := [Vi, Vj ], we say that V Lie generates L. The Heisenberg group is the simplest
Carnot group of step 2.
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5 Abnormal geodesics

We close this section by saying a few words about abnormal geodesics in sub-Riemannian ge-
ometry. We give an explicit example of such a geometry. We consider the Martinet distribution
on R3 given by

Θ(x, y, z) = dz − 1
2
y2dx,

Each horizontal plane is spanned by vector fields

X =
∂

∂x
− 1

2
y2 ∂

∂z
, Y =

∂

∂y

[X,Y ] = −y ∂
∂z , [[X,Y ], Y ] = − ∂

∂z . Let the Martinet surface be given by Σ = {y = 0}. Off this
horizontal plane, the X,Y, [X,Y ] span TR3 while X,Y, [[X,Y ], Y ] span TR3 on Σ. Again, by
Chow’s Theorem, any two points in this geometry are horizontally connected. One can show
that on the x-axis, any horizontal curve γ(t) = (t, 0, 0) on Σ is abnormal. To see that, pick
vector fields X,Y such that X is tangent to Martinet curves, and Y is transverse to Σ. Let

X = (1 + yψ1)
∂

∂x
+ yψ2

∂

∂y
+ yψ3

∂

∂z
, Y =

∂

∂y
.

It can be proven that if the x-axis is the projection of a solution to Hamilton’s equations for the
sub-Riemannian Hamiltonian, then ψ1 = 0 along x-axis. It turns out that this is a contradiction.
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