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Abstract: In this paper, we discuss how to obtain certificates for the non-feasibility
of connectivity graphs arising from multi-agent formations. We summarize some
previous work on connectivity graphs and their feasibility. Next, we introduce
the Positivstellensatz to show how it can be used to better understand the space
of all connectivity graphs for a fixed number of vertices, which had previously
been understood as only a subspace of the space of all graphs. We study one
particular class of graphs and use our methodology to prove some more results in
the feasibility of connectivity graphs. Copyright c©2005 IFAC.
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1. INTRODUCTION

The problem of coordinating multiple mobile
robots is one in which a finite representation of
the configuration space appears naturally, namely
by using graph-theoretic models for describing
the local interactions in the formation. In other
words, graph-based models can serve as a bridge
between the continuous and the discrete when
trying to manage the design-complexity associ-
ated with formation control problems. Notable
results along these lines have been presented in
(Saber et al., 2003; Jadbabaie et al., 2003; Mes-
bahi, 2002; Muhammad et al. ACC, 2004). The
conclusion to be drawn from these research ef-
forts is that a number of questions can be an-
swered in a natural way by abstracting away the
continuous dynamics of the individual agents. In
(Muhammad et al. CDC, 2004; Muhammad et
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al. AMC, 2004), the authors have presented a
detailed study of graphs that arise due to the
limited sensory perception or communication of
individual agents in a formation. We showed that
the graphs that can represent formations do in
fact correspond to a proper subset of all graphs,
denoted by the set of connectivity graphs. We pre-
sented several examples of graphs that fail to exist
as connectivity graphs. An important observation
was that these invalid graphs begin to appear only
when the number of agents are greater than 4.
The examples of invalid connectivity graphs in
(Muhammad et al. CDC, 2004) were studied using
simple geometrical arguments and the method
was found to be suitable for studying only cer-
tain types of graphs. What has been missing is a
computational method that gives a feasibility or
non-feasibility certificate for any arbitrary graph,
thereby making the characterization of the set
of connectivity graphs complete. In this paper,
we take the first steps towards such a compu-



tational method. We find that this new method
has strong connections with emerging methods in
semi-definite programming and the Positivstellen-
satz for semi-algebraic sets. We also note, that this
new formulation of the problem leads to ideas that
are helpful for studying formation planning under
sensory and communication constraints.

This paper is organized as follows. We first sum-
marize our previous work on connectivity graphs
(Section 2). Then we formulate the feasibility
problem of connectivity graphs as that of a semi-
algebraic set (Section 3) and explain how to use
the Positivstellensatz for obtaining certificates of
non-feasibility.

2. FORMATIONS AND CONNECTIVITY
GRAPHS

Graphs can model local interactions between
agents, when individual agents are constrained by
limited knowledge of other agents. In this section
we summarize some previous results (Muhammad
et al. CDC, 2004) of a graph theoretic formalism
for describing formations in which the primary
limitation of perception for each agent is the
limited range of its sensor. Suppose we have N
such agents with identical dynamics evolving on
R2. Each agent is equipped with a range limited
sensor by which it can sense the position of other
agents. All agents have identical sensor ranges δ.
Let the position of each agent be xn ∈ R2, and its
dynamics be given by

ẋn = f(xn, un),

where un ∈ Rm is the control for agent n and
f : R2 × Rm → R2 is a smooth vector field. The
configuration space CN (R2) of the agent forma-
tion is made up of all ordered N -tuples in R2,
with the property that no two points coincide,
i.e. CN (R2) = (R2 × R2 × . . .R2) − ∆, where
∆ = {(x1,x2, . . . ,xN ) : xi = xj for some i 6= j}.
The evolution of the formation can be represented
as a trajectory F : R+ → CN (R2), usually written
as F(t) = (x1(t),x2(t), . . .xN (t)) to signify time
evolution. The spatial relationship between agents
can be represented as a graph in which the vertices
of the graph represent the agents, and the pair of
vertices on each edge tells us that the correspond-
ing agents are within sensor range δ of each other.

Let GN denote the space of all possible graphs that
can be formed on N vertices V = {v1, v2, . . . , vN}.
Then we can define a function ΦN : CN (R2) →
GN , with ΦN (F(t)) = G(t), where G(t) =
(V, E(t)) ∈ GN is the connectivity graph of the
formation F(t). vi ∈ V represents agent i at
position xi, and E(t) denotes the edges of the
graph. eij(t) = eji(t) ∈ E(t) if and only if ‖xi(t)−
xj(t)‖ ≤ δ i 6= j. In other words,

ΦN (F(t)) =({v1, . . . vN}, {(vi, vj) | i 6= j and
‖xi(t)− xj(t)‖ ≤ δ})

These graphs are simple by construction i.e. there
are no loops or parallel edges. The graphs are
always undirected because the sensor ranges are
identical. The motion of agents in a formation
may result in the removal or addition of edges in
the graph. Therefore G(t) is a dynamic structure.
Lastly and most importantly, every graph in GN

is not a connectivity graph. The last observation
is not as obvious as the others, and it has been
analyzed in detail in (Muhammad et al. CDC,
2004). We summarize this work below.
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Fig. 1. Depicted are three robots and their inter-
robot distances.

A realization of a graph G ∈ GN is a formation
F ∈ CN (R2), such that ΦN (F) = G. An arbi-
trary graph G ∈ GN can therefore be realized
as a connectivity graph in CN (R2) if Φ−1

N (G) is
nonempty. We denote by GN,δ ⊆ GN , the space
of all possible graphs on N agents with sensor
range δ, that can be realized in CN (R2). Let us
start by analyzing this space for small values of
N . Consider the situation in Figure 1, where the
3 agents are positioned at the points marked by
circles. Let each position xi be given by its Carte-
sian coordinate pair (xi1, xi2)T . For notational
convenience let ‖x1 − x2‖ = l12, ‖x2 − x3‖ = l23
and |x1 − x3‖ = l13. Also let θ and ψ123 be
the angles shown in the figure. In general, any
connectivity graph on N vertices imposes various
constraints on the relative positions of individual
agents in the configuration space CN (R2). In the
case of a connected graph on 3 vertices, the con-
straints on positions x1, x2 and x3 correspond to a
single constraint on the angle ψ123, when the the
agents are positioned as shown in Figure 1. This
simple observation will subsequently lead to some
interesting properties of the connectivity graphs
and their realizations. Suppose we are considering
the line graph on 3 vertices in Figure 3, then
the given geometrical configuration corresponds
to this graph if l12 ≤ δ, l23 ≤ δ, and l13 > δ.
Moreover we can write

l213 = (l12 + l23 cos θ)2 + (l23 sin θ)2,

= l212 + l223 + 2l23l12 cos θ.

If l13 > δ then

cos θ >
δ2 − l212 − l223

2l23l12
.



It is easy to see that the term on the right has a
minimum corresponding to the maximum values
of l12 = l23 = δ. Therefore cos θ > − 1

2 which
means that θ ∈ [− 2π

3 , 2π
3 ]. Therefore the smaller

angle between l12 and l23 satisfies ψ123 = π −
θ > π

3 , for all 0 < l12, l23 ≤ δ and l13 > δ.
Hence, whenever we have two edges eij and eik

in a connectivity graph that share a vertex vi in
such a way that there is no edge between vertices
vj and vk, then

ψj,i,k , cos−1

(
< xj − xi,xi − xk >

‖xj − xi‖‖xi − xk‖
)

>
π

3
(1)

Now, denote by SN the ”star graph” in GN i.e.
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Fig. 2. Graphs ♦5, ♦6 and S7, that are not
connectivity graphs

the graph which has N −1 vertices v2, v3 . . . vN of
degree 1 and one vertex v1 with degree N − 1. An
example of such a graph is shown in Figure 2.a.
Also denote by ♦5 and ♦6, the graphs in G5 and G6

respectively, as drawn in Figures 2.a and 2.b. It is
easy to see that the graph ♦5 ∈ G5 does not belong
to G5,δ. This is because, if it is realizable, then
the angles ψ415, ψ512, ψ123, ψ235, ψ534 and ψ341

are all greater than π
3 . Therefore, ψ415 + ψ512 +

ψ123 + ψ235 + ψ534 + ψ341 > 6
(

π
3

)
= 2π. But

since x1,x2,x3,x4 ∈ R2 are vertices of a polygon
of 4 sides, ψ415 + ψ512 + ψ123 + ψ235 + ψ534 +
ψ341 = 2π, which is a contradiction. By similar
geometrical arguments, we can see that ♦6 6∈ GN,6.
Similarly SN ∈ GN does not belong to GN,δ for
N > 6 (See (Muhammad et al. CDC, 2004) for
details). There are of course other examples of
realizable and non-realizable connectivity graphs.
If a graph is completely disconnected, it means
that the distance between any two agents in the
formation is separated by more than δ. This can
easily be achieved by placing the vertices one by
one in such a way that xi does not belong to⋃i−1

j=1 Bδ(xj), where Bδ(x) is the closed ball of
radius δ centered at x. This observation can be
further generalized as follows. A graph G ∈ GN,δ

if and only if each of its connected component
Gi ∈ GMi is realizable in some GMi,δ, Mi < N .

Theorem: GN,δ is a proper subspace of GN if and
only if N ≥ 5.

Proof: In order to prove that GN,δ is a proper
subspace of GN for some N , it is enough to show
that Φ : CN (R2) → GN is not onto. Therefore
we need to provide a graph G ∈ GN such that
Φ−1(G) = ∅. From the discussion above, we have
examples of graphs that are not realizable in G5,δ

and G6,δ. For N ≥ 7 the star graphs SN provide

Fig. 3. Possible realizations for all G ∈ GN,δ for
N ≤ 4

the examples of graphs that cannot be realized
as connectivity graphs in GN,δ. This proves that
GN,δ is a proper subspace of GN if N ≥ 5.
To prove that every graph in GN , for N < 5,
is realizable in GN,δ, we have to enumerate all
possible graphs for N < 5 and give realizations
for each graph. Since we are dealing with a small
number N(< 5), the enumeration strategy works
well. The number of possible graphs to check
can be further reduced by noting that we need
to consider only connected graphs. These graphs
together with their realizations are given in Figure
3, which completes the proof.

It follows from this theorem that if each connected
component Gi of a graph G ∈ GN belongs to GMi ,
Mi < 5 then the graph has a realization in GN,δ.
Formations can produce a wide variety of graphs
for N vertices. This includes graphs that have
disconnected subgraphs or totally disconnected
graphs with no edges. However the problem of
switching between different formations or of find-
ing interesting structures within a formation of
sensor range limited agents can only be tackled
if no sub-formation of agents is totally isolated
from the rest of the formation. This means that
the connectivity graph G(t) of the formation F(t)
should always remain connected (in the sense of
connected graphs) for all time t.

3. FEASIBILITY OF FORMATIONS AND
THE POSITIVSTELLENSATZ

Some previous results on the set of connectivity
graphs GN,δ ⊆ GN have been summarized above.
In the arguments for proving the above theorem,
some simple geometrical arguments have been
used to show whether a given connectivity graph
has any feasible realization. Although, these argu-
ments give sufficient conditions for certain graphs,
they cannot be easily applied to all graphs. In



fact, it will be interesting to know the answer to
the following question: Given any arbitrary graph
G ∈ GN , can it be realized as a connectivity graph
in CN (R2)? Recall that each connectivity graph
(V, E) for the formation (x1,x2, · · ·xN ) ∈ CN (R2)
can be described by N(N − 1)/2 relations of the
following form:

(1) ‖xi − xj‖ ≤ δ, if eij ∈ E ,
(2) ‖xi − xj‖ > δ, if eij 6∈ E .

Let xi = (xi, yi) for all 1 ≤ i ≤ N , then
each of these relations can be written as in-
equality constraints, {fk ≥ 0}, where each fk ∈
R[x1, y1, . . . , xN , yN ], a polynomial in 2N vari-
ables over the real numbers. Therefore the real-
ization problem is equivalent to asking if there
exist x1, y1, . . . , xN , yN such that the following
inequality constraints are satisfied.

δ2 − (xi − xj)2 − (yi − yj)2 ≥ 0, if eij ∈ E ,

(xi − xj)2 + (yi − yj)2 − δ2 > 0, if eij /∈ E ,

where 1 ≤ i < j ≤ N . The following is an impor-
tant result in studying problems of feasibility for
semi-algebraic sets (Stengle, 1974).

Positivstellensatz: Given polynomials {f1, . . . fs},
{g1, . . . , gt} and {h1, . . . , hu}, all in R[x1, . . . xn],
the following are equivalent:

(1) The set {x ∈ Rn : fi(x) ≥ 0, hi(x) =
0, gi(x) 6= 0, i = 1 . . . s, j = 1 . . . t, k =
1 . . . u} is empty.

(2) There exist polynomials f ∈ P(f1, . . . fs), g ∈
M(g1, . . . gt), h ∈ I(h1, . . . hu) such that f +
g2 + h = 0,

where P(f1, . . . fs) is the Cone generated by the
polynomials {fi},M(g1, . . . gt) is the Monoid over
{gi} and I(h1, . . . hu) is the Ideal generated by
{hi}. See (Stengle, 1974; Hungerford, 2004) for
further details on these algebraic objects. Before
using the Positivstellensatz, let us first perform
the following simplifications. Note that if a forma-
tion (x1,x2, · · ·xN ) ∈ CN (R2) is feasible, and A :
R2 → R2 is an isometry, then (Ax1, Ax2, · · ·AxN )
is also feasible. In fact, this induces an isometry
of CN (R2) as well. Let us define an isometry A by

A(x) = R(−ψ)(x− x1),

where

R(θ) =
(

cos θ sin θ
− sin θ cos θ

)
,

and ψ is the angle of the vector x2 − x1 w.r.t the
positive x-axis in R2. With this choice, Ax1 = 0
and Ax2 = [‖x2 − x1‖, 0]T . The existence of such
an isometry implies that we can study the non-
feasibility problem by ignoring the 3 variables
x1, y1, and y2. We therefore setup the quadratic
forms in the following way. Let M = 2N − 2
and x = [x2, x3, y3, x4, y4 . . . xN , yN , 1]T ∈ RM .
If eij ∈ E , then the inequality

δ2 − (xi − xj)2 − (yi − yj)2 ≥ 0,

can be written as xT Aijx ≥ 0, where Aij ∈
RM×M . If j > i ≥ 3, then Aij has the following
form,


−1 0 1 0
0 −1 0 1

1 0 −1 0
0 1 0 −1

δ2




Index
2i− 4
2i− 3

2j − 4
2j − 3

2N − 2

and all entries not explicitly written are zeros. It
is easy to see that for terms involving x1 and x2,
we have similar matrices with more zeros at the
appropriate slots. In particular, if e12 ∈ E then the
relation between x1 x2 simplifies to x2

2 ≤ δ2, with
A12 = diag(−1, 0, . . . , 0, δ2). Similarly, if elm 6∈ E ,
then the inequality

(xl − xm)2 + (yl − ym)2 − δ2 > 0,

can be written as xT Blmx > 0. For m > l ≥ 3 we
have

Blm =




1 0 −1 0
0 1 0 −1

−1 0 1 0
0 −1 0 1

−δ2




2l − 4
2l − 3

2m− 4
2m− 3

2N − 2

We will have a total of N(N−1)/2 such quadratic
forms. The non-feasibility problem is therefore
equivalent to asking if the set X = {x ∈
RM | xT Aijx ≥ 0, 1 ≤ i < j ≤ N, eij ∈
E ,xT Blmx > 0, 1 ≤ l < m ≤ N, elm 6∈ E} is
empty. It is worthwhile to note that if the forma-
tion is feasible, the above simplification based on
the isometry A, bounds the set X in the following
way. We give the following standard definition.

The diameter D of a graph is defined as the
longest graph geodesic between any two graph
vertices of a graph.

D(G) = max
vi,vj∈V

d(vi, vj),

where d(vi, vj) is the graph geodesic between
vertices vi and vj , given by the minimum length
of the paths connecting them. In some sense, it is
longest shortest path in a graph. Similar to this
quantity, we can define the graph radius by,

ρ(G) = max
vi∈V

d(vi, v1),

We note that ρ(G) ≤ D(G). By placing x1 at
(0, 0), we therefore have ‖xi‖ ≤ ρ(G)δ for 2 ≤ i ≤
N . If x ∈ X then,



xT x ≤ (N − 1)2δ2ρ(G)2 + 1. (2)

Let D = {x ∈ RM | xT x ≤ (N − 1)2δ2ρ(G)2 +
1}, then X ⊆ D. Therefore for checking non-
feasibility, we restrict our search to D. Eq. (2)
gives a useful bound on x and is particularly
helpful for numerical computations. Moreover, it
tells us that the search for a non-feasibility certifi-
cate is restricted to a bounded set. Unfortunately
despite being bounded, X is not compact. We will
see later that this complicates the search for the
certificates.

It should be noted that all semi-algebraic con-
straints on the set X are quadratic. Moreover
Aij = AT

ij and Blm = BT
lm. For quadratic con-

straints, the Positivstellensatz has been shown
to be equivalent to the celebrated S-procedure
(Parrilo et al., 2003). The S-procedure transforms
the Positivstellensatz into a linear matrix inequal-
ity (LMI) problem.

Theorem: Given symmetric n × n matrices
{Ak}m

k=0, the following are equivalent:

(1) The set {x ∈ Rn | xT A1x ≥ 0,xT A2x ≥
0, · · · ,xT Amx ≥ 0,xT A0x ≥ 0,xT A0x 6= 0}
is empty.

(2) There exist non-negative scalars {λk}m
k=1

such that −A0 −
∑m

k=1 λkAk ≥ 0.

If {λk}m
k=1 exist then letQ = −A0−

∑m
k=1 λkAk ≥

0, g = xT A0x and

f = (xTQx)(xT A0x) +
m∑

k=1

λk(xT A0x)(xT Akx).

Since g ∈ M(xT A0x) and f ∈ P(xT A0x,
xT A1x, · · ·xT Amx), f + g2 = 0 as desired.

Note that any strict constraint xT Cx > 0 can
be formulated as xT Cx ≥ 0,xT Cx 6= 0. There-
fore, if we ignore the strictness of all but one of
the constraints given by xT Blmx > 0, the S-
procedure gives the certificates of non-feasibility
for a given graph. Unfortunately, the strictness of
more than inequality makes the S-procedure lossy
(Boyd et al., 1994) i.e. it only becomes a sufficient
condition. Therefore, this procedure can only work
for the limited case described below.

Consider the complete graph KN . As discussed
in (Muhammad et al. AMC, 2004), KN is always
feasible. It will be interesting to find if there is an
example of an infeasible graph obtained by remov-
ing exactly one edge e, from KN . We will denote
such graph by KN − e. Without loss of generality
let e = e12. By the procedure described above,
the non-feasibility question can be answered by
setting up N(N − 1)/2 − 1 quadratic forms of
the type xT Aijx ≥ 0, 3 ≤ i < j ≤ N and one
quadratic form of the type xT B12x ≥ 0, where
B12 = diag(1, · · · ,−δ2). Clearly this can be a
candidate for testing the S-procedure described

above. In fact, it can be seen that the correspond-
ing LMI

Q = −B12 −
N−1∑

i=1

N∑

j=i+1

λijAij (3)

can never be non-negative definite for any combi-
nation of λij > 0. To prove this, note that Q can
be written as

x2 x3 y3 x4 y4 . xi yi . xN yN 1
x2 a22 a23 0 a24 . . a2i 0 . a2N 0 0
x3 a23 a33 0 a34 0 . a3i 0 . a3N 0 0
y3 0 0 a33 0 a34 . . a3i . 0 a3N 0
x4 a24 a34 0 a44 0 . a4i 0 . a4N 0 0
y4 0 0 a34 0 a44 . 0 a4i . 0 a4N 0
...

...
xi a2i a3i 0 a4i 0 . aii 0 . aiN 0 0
yi 0 0 a3i 0 a4i . 0 aii . . aiN 0
... . . . . . . . . . . .

...
xN a2N a3N 0 a4N 0 . a4i 0 . aNN 0 0
yN 0 0 a3N 0 a4N . 0 a4i . 0 aNN 0
1 0 0 0 0 0 . 0 0 . 0 0 aMM

where the non-zero off-diagonal entries are

amn = −λmn, m 6= n,

and the diagonal entries are given by

aii = −1 +
N∑

j=3

λ2j , i = 2.

aii = λ1i +
i−1∑

k=2

λki +
N∑

k=i+1

λik, 2 < i ≤ N.

aii = δ2(1−
N−1∑

k=1

N∑

j=k+1

λkj) i = M.

Notice that the feasibility question is independent
of δ. If G is feasible for δ1 > 0 then it is feasible for
all δ > 0. For simplicity let δ = 1. Since λij > 0,
Q 6= 0. So we need to show that Q ≯ 0. Note that
this is not equivalent to showing that Q < 0. A
necessary condition for Q = [qij ] > 0 is that

qii > 0

qii + qjj > 2qij

Now consider,

a22 + aMM =−1 +
N∑

j=3

λ2j + 1−
N−1∑

i=1

N∑

k=i+1

λik

=−
N∑

j=1

λ2j −
N−1∑

i=3

N∑

k=i+1

λik

If Q > 0 then a22 + aMM > 0, but λij > 0 for all
1 ≤ i < j ≤ N , so that a22 +aMM < 0, which is a
contradiction. So Q is never non-negative definite
for any choice of λij . By the S-procedure, the non-
negativity condition of Q is both necessary and
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Fig. 4. Geometric construction of a feasible for-
mation for KN − e.

sufficient. Therefore, the set is always non-empty
and we have proved the following result.

Proposition: KN − e is feasible for all N .

Motivated by this result, one can also give a geo-
metric construction to provide feasible formations
for KN−e for all N . Consider the realization of the
graph depicted in the lower left corner of Fig. 3.
This is a realization K4 − e. Now consider Fig.4.
The shaded region is the intersection of discs of
radius δ, centered at x3 and x4. Any node placed
in this shaded region will be connected to all other
nodes of the graph. Therefore, we can pack any
number of nodes in this shaded region, getting a
realization for KN − e for arbitrary value of N .

For the general case, where we have multiple strict
inequalities, we present the following result for
odd number of strict constraints.

Proposition: Let Q ∈ N be odd. Given symmetric
n× n matrices {Ak}P

k=0, the set Y = {x ∈ Rn |
xT A0x ≥ 0, · · · ,xT AQ−1x ≥ 0,
xT AQx ≥ 0, · · · ,xT AP x ≥ 0,
xT A0x 6= 0, · · · ,xT AQ−1x 6= 0, } is empty if for
all 0 ≤ q ≤ Q−1, there exist non-negative scalars
{λ(q)

k }, 1 ≤ k ≤ P, k 6= q such that

−Aq −
P∑

k=1,k 6=q

λ
(q)
k Ak ≥ 0.

Proof: Let Qq = −Aq −
∑P

k=1,k 6=q λ
(q)
k Ak. If

Qq ≥ 0 then let

g(x) ,
Q−1∏
q=0

(xT Aqx) ∈M(xT A0, · · · ,xT AQ−1x),

f(x) ,
Q−1∏
q=0

(xT Aqx)(xTQqx) + · · ·

· · ·+
∑

i1,···iQ−1

λi1
j1
· · ·λiQ−1

jQ−1
(xT Ai1x) . . . (xT AiQ−1x)

Here the details on the indexes i1, . . . , iQ−1

and j1, . . . , jQ−1 have been omitted for brevity.
Clearly, f ∈ P(xT A0, · · · ,xT AP x) so that f +
g2 = 0 as desired.

Note that this result only provides a sufficient
condition for the non-feasibility of Y for odd num-
ber of strict constraints only. Finding a necessary
criterion, and finding a criterion for even number
of strict constraints is still a topic of research.
Once we have such a method, it will be possible to
give a complete characterization of the entire class
of connectivity graphs, significantly improving the
characterization given in the Theorem given in
Section 2.

4. CONCLUSIONS

The feasibility of connectivity graphs can be stud-
ied using tools from semi-definite programming
and algebraic geometry. The positivstellensatz
can be used to give explicit certificates of non-
feasibility. These computational methods give a
way to study the feasibility questions for arbitrary
graphs in a more systematic way.
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