EE-565: Mobile Robotics
Non-Parametric Filters
Module 2, Lecture 5

Dr Abubakr Muhammad
Assistant Professor
Electrical Engineering, LUMS
Director, CYPHYNETS Lab
http://cyphynets.lums.edu.pk
Resources

Course material from
• Stanford CS-226 (Thrun) [slides]
• KAUST ME-410 (Abubakr, 2011)
• LUMS EE-662 (Abubakr, 2013)
http://cyphynets.lums.edu.pk/index.php/Teaching

Textbooks
• Probabilistic Robotics by Thrun et al.
• Principles of Robot Motion by Choset et al.
Part 1.

BAYESIAN PHILOSOPHY FOR STATE ESTIMATION
State Estimation Problems

- What is a state?
- Inferring “hidden states” from observations
- What if observations are noisy?
- More challenging, if state is also dynamic.
- Even more challenging, if the state dynamics are also noisy.
State Estimation Example: Localization

- **Definition.** Calculation of a mobile robot’s position/orientation relative to an external reference system.

- Usually world coordinates serve as reference.

- Basic requirement for several robot functions:
 - Approach of target points, path following.
 - Avoidance of obstacles, dead-ends.
 - Autonomous environment mapping.

Requires accurate maps!!
State Estimation Example: Mapping

- **Objective**: Store information outside of sensory horizon
- **Map** provided a-priori or can be online

Types
- **world-centric maps**
 navigation, path planning
- **robot-centric maps**
 pilot tasks (e.g. collision avoidance)

Problem: inaccuracy due to sensor systems

Requires accurate localization!!
Estimate robot path and/or map!

\[p(x_{1:t}, m \mid z_{1:t}, u_{1:t}) \]
Simple Example of State Estimation

- Suppose a robot obtains measurement z
- What is $P(\text{open}|z)$?
Bayes Formula

\[P(x, y) = P(x \mid y)P(y) = P(y \mid x)P(x) \]

\[P(x \mid y) = \frac{P(y \mid x)P(x)}{P(y)} = \frac{\text{likelihood \cdot prior}}{\text{evidence}} \]

\[P(x \mid y) = \frac{P(y \mid x)P(x)}{P(y)} = \eta \frac{P(y \mid x)}{P(x)} \]

\[\eta = P(y)^{-1} = \frac{1}{\sum_x P(y \mid x)P(x)} \]
Causal vs. Diagnostic Reasoning

- $P(\text{open} \mid z)$ is diagnostic.
- $P(z \mid \text{open})$ is causal.
- Often causal knowledge is easier to obtain.
- Bayes rule allows us to use causal knowledge:

$$P(\text{open} \mid z) = \frac{P(z \mid \text{open}) P(\text{open})}{P(z)}$$
Example

- $P(z|\text{open}) = 0.6, \quad P(z|\neg\text{open}) = 0.3$
- $P(\text{open}) = P(\neg\text{open}) = 0.5$

$$P(\text{open}|z) = \frac{P(z|\text{open})P(\text{open})}{P(z|\text{open})p(\text{open}) + P(z|\neg\text{open})p(\neg\text{open})}$$

$$P(\text{open}|z) = \frac{0.6 \cdot 0.5}{0.6 \cdot 0.5 + 0.3 \cdot 0.5} = \frac{2}{3} = 0.67$$

z raises the probability that the door is open.
Combining Evidence

• Suppose our robot obtains another observation z_2.

• How can we integrate this new information?

• More generally, how can we estimate $P(x | z_1 \ldots z_n)$?
Recursive Bayesian Updating

\[
P(x \mid z_1, \ldots, z_n) = \frac{P(z_n \mid x, z_1, \ldots, z_{n-1}) P(x \mid z_1, \ldots, z_{n-1})}{P(z_n \mid z_1, \ldots, z_{n-1})}
\]

Markov assumption: \(z_n \) is independent of \(z_1, \ldots, z_{n-1} \) if we know \(x \).

\[
P(x \mid z_1, \ldots, z_n) = \frac{P(z_n \mid x)P(x \mid z_1, \ldots, z_{n-1})}{P(z_n \mid z_1, \ldots, z_{n-1})}
\]

\[
= \eta P(z_n \mid x)P(x \mid z_1, \ldots, z_{n-1})
\]

\[
= \eta \prod_{i=1}^{n} P(z_i \mid x)P(x)
\]
Example: Second Measurement

- \(P(z_2 | \text{open}) = 0.5 \) \(P(z_2 | \neg \text{open}) = 0.6 \)
- \(P(\text{open} | z_1) = \frac{2}{3} \)

\[
P(\text{open} | z_2, z_1) = \frac{P(z_2 | \text{open}) \cdot P(\text{open} | z_1)}{P(z_2 | \text{open}) \cdot P(\text{open} | z_1) + P(z_2 | \neg \text{open}) \cdot P(\neg \text{open} | z_1)}
\]

\[
= \frac{1 \cdot \frac{2}{3}}{\frac{2}{3} + \frac{5}{3}} = \frac{5}{8} = 0.625
\]

\(z_2 \) lowers the probability that the door is open.
Probabilistic Graphical Models

Sensing: $p(z_t \mid x_t, m)$

$p(x_{1:t}, m \mid z_{1:t}, u_{1:t})$
1. Beams reflected by obstacles
2. Beams reflected by persons / caused by crosstalk
3. Random measurements
4. Maximum range measurements
Raw Sensor Data

Measured distances for expected distance of 300 cm.

Sonar

Laser
Approximation Results

Laser

Sonar

300cm

400cm
Actions

• Often the world is dynamic since
 • actions carried out by the robot,
 • actions carried out by other agents,
 • or just the time passing by

change the world.

• How can we incorporate such actions?
Typical Actions

• The robot turns its wheels to move
• The robot uses its manipulator to grasp an object
• Plants grow over time...

• Actions are never carried out with absolute certainty.
• In contrast to measurements, actions generally increase the uncertainty.
Modeling Actions

• To incorporate the outcome of an action u into the current “belief”, we use the conditional pdf $P(x|u,x')$

$P(x|u,x')$

• This term specifies the pdf that executing u changes the state from x' to x.
Probabilistic Graphical Models

Action: \(p(x_t | x_{t-1}, u_{t-1}) \)

\[
p(x_{1:t}, m | z_{1:t}, u_{1:t})
\]
Odometry Model

Robot moves from \(\langle x, y, \theta \rangle \) to \(\langle x', y', \theta' \rangle \).

Odometry information

\[
\begin{align*}
\delta_{\text{trans}} &= \sqrt{(x' - x)^2 + (y' - y)^2} \\
\delta_{\text{rot1}} &= \text{atan2}(y' - y, x' - x) - \theta \\
\delta_{\text{rot2}} &= \theta' - \theta - \delta_{\text{rot1}}
\end{align*}
\]

\[
\mathbf{u} = \langle \delta_{\text{rot1}}, \delta_{\text{rot2}}, \delta_{\text{trans}} \rangle
\]
Effect of Distribution Type
Example: Closing the door
State Transitions

\[P(x|u,x') \] for \(u = "\text{close door}" \):

If the door is open, the action “close door” succeeds in 90% of all cases.
Integrating the Outcome of Actions

Continuous case:

\[P(x \mid u) = \int P(x \mid u, x') P(x') \, dx' \]

Discrete case:

\[P(x \mid u) = \sum P(x \mid u, x') P(x') \]
Example: The Resulting Belief

\[P(\text{closed} \mid u) = \sum P(\text{closed} \mid u, x') P(x') \]
\[= P(\text{closed} \mid u, \text{open}) P(\text{open}) \]
\[+ P(\text{closed} \mid u, \text{closed}) P(\text{closed}) \]
\[= \frac{9}{10} \times \frac{5}{8} + \frac{1}{8} \times \frac{3}{16} = \frac{15}{16} \]

\[P(\text{open} \mid u) = \sum P(\text{open} \mid u, x') P(x') \]
\[= P(\text{open} \mid u, \text{open}) P(\text{open}) \]
\[+ P(\text{open} \mid u, \text{closed}) P(\text{closed}) \]
\[= \frac{1}{10} \times \frac{5}{8} + \frac{0}{8} \times \frac{3}{16} = \frac{1}{16} \]
\[= 1 - P(\text{closed} \mid u) \]
Bayes Filters: Framework

• **Given:**
 - Stream of observations \(z \) and action data \(u \):
 \[
 \{ u_1, z_1, \ldots, u_t, z_t \}
 \]
 - Sensor model \(P(z|x) \).
 - Action model \(P(x|u,x') \).
 - Prior probability of the system state \(P(x) \).

• **Wanted:**
 - Estimate of the state \(X \) of a dynamical system.
 - The posterior of the state is also called **Belief**:
 \[
 Bel(x_t) = P(x_t \mid u_1, z_1, \ldots, u_t, z_t)
 \]
Dynamic Bayesian Network for Controls, States, and Sensations
Markov Assumption

Underlying Assumptions

• Static world
• Independent noise
• Perfect model, no approximation errors

\[
p(z_t \mid x_{0:t}, z_{1:t}, u_{1:t}) = p(z_t \mid x_t) \\
p(x_t \mid x_{1:t-1}, z_{1:t}, u_{1:t}) = p(x_t \mid x_{t-1}, u_t)
\]
Bayes Filters

\[
Bel(x_t) = P(x_t \mid u_1, z_1 \ldots, u_t, z_t)
\]

Bayes

\[
= \eta \ P(z_t \mid x_t, u_1, z_1, \ldots, u_t) \ P(x_t \mid u_1, z_1, \ldots, u_t)
\]

Markov

\[
= \eta \ P(z_t \mid x_t) \ P(x_t \mid u_1, z_1, \ldots, u_t)
\]

Total prob.

\[
= \eta \ P(z_t \mid x_t) \int P(x_t \mid u_1, z_1, \ldots, u_t, x_{t-1}) \ P(x_{t-1} \mid u_1, z_1, \ldots, u_t) \ dx_{t-1}
\]

Markov

\[
= \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ P(x_{t-1} \mid u_1, z_1, \ldots, u_t) \ dx_{t-1}
\]

Markov

\[
= \eta P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ P(x_{t-1} \mid u_1, z_1, \ldots, z_{t-1}) \ dx_{t-1}
\]

\[
= \eta P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}
\]

z = observation
u = action
x = state
\[\text{Bel}(x_t) = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ \text{Bel}(x_{t-1}) \ dx_{t-1} \]

1. Algorithm **Bayes_filter**(Bel(x), d):
2. \(\eta=0 \)
3. If \(d \) is a perceptual data item \(z \) then
4. For all \(x \) do
5. \(\text{Bel}'(x) = P(z \mid x) \text{Bel}(x) \)
6. \(\eta = \eta + \text{Bel}'(x) \)
7. For all \(x \) do
8. \(\text{Bel}'(x) = \eta^{-1} \text{Bel}'(x) \)
9. Else if \(d \) is an action data item \(u \) then
10. For all \(x \) do
11. \(\text{Bel}'(x) = \int P(x \mid u, x') \text{Bel}(x') \ dx' \)
12. Return \(\text{Bel}'(x) \)
Bayes Filters are Familiar!

\[Bel(x_t) = \eta \ P(z_t | x_t) \int P(x_t | u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1} \]

- Kalman filters
- Particle filters
- Hidden Markov models
- Dynamic Bayesian networks
- Partially Observable Markov Decision Processes (POMDPs)
Bayes Filters in Localization

\[Bel(x_t) = \eta \ P(z_t | x_t) \int P(x_t | u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1} \]
Summary so far

- Bayes rule allows us to compute probabilities that are hard to assess otherwise.
- Under the Markov assumption, recursive Bayesian updating can be used to efficiently combine evidence.
- Bayes filters are a probabilistic tool for estimating the state of dynamic systems.
Parametric Vs. Non-parametric

- Representing distributions by using statistics or parameters (mean, variance)
- Non-parametric approach: Deal with distributions directly
- Remember:
 1. Gaussian distribution is completely parameterized by two numbers (mean, variance)
 2. Gaussian distribution remains Gaussian when mapped linearly.
Linearization
Linearization (Cont.)
Bayes Filters in Localization

\[\text{Bel}(x_t) = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ \text{Bel}(x_{t-1}) \ dx_{t-1} \]
Histogram = Piecewise Constant
Piecewise Constant Representation

\[Bel(x_t = \langle x, y, \theta \rangle) \]

\[(0, 0, 0) \]
Discrete Bayes Filter Algorithm

1. Algorithm \texttt{Discrete_Bayes_filter}(\textit{Bel}(x), d):
2. \(\eta = 0 \)
3. \textbf{If} \(d \) is a \texttt{perceptual} data item \(z \) \textbf{then}
4. \hspace{1em} For all \(x \) \textbf{do}
5. \hspace{2em} \(\textit{Bel}'(x) = P(z \mid x)\textit{Bel}(x) \)
6. \hspace{1em} \(\eta = \eta + \textit{Bel}'(x) \)
7. \hspace{1em} For all \(x \) \textbf{do}
8. \hspace{2em} \(\textit{Bel}'(x) = \eta^{-1}\textit{Bel}'(x) \)
9. \textbf{Else if} \(d \) is an \texttt{action} data item \(u \) \textbf{then}
10. \hspace{1em} For all \(x \) \textbf{do}
11. \hspace{2em} \(\textit{Bel}'(x) = \sum_{x'} P(x \mid u, x') \textit{Bel}(x') \)
12. \textbf{Return} \(\textit{Bel}'(x) \)
Implementation (1)

• To update the belief upon sensory input and to carry out the normalization one has to iterate over all cells of the grid.

• Especially when the belief is peaked (which is generally the case during position tracking), one wants to avoid updating irrelevant aspects of the state space.

• One approach is not to update entire sub-spaces of the state space.

• This, however, requires to monitor whether the robot is de-localized or not.

• To achieve this, one can consider the likelihood of the observations given the active components of the state space.
Implementation (2)

- To efficiently update the belief upon robot motions, one typically assumes a bounded Gaussian model for the motion uncertainty.
- This reduces the update cost from $O(n^2)$ to $O(n)$, where n is the number of states.
- The update can also be realized by shifting the data in the grid according to the measured motion.
- In a second step, the grid is then convolved using a separable Gaussian Kernel.
- Two-dimensional example:

<table>
<thead>
<tr>
<th></th>
<th>1/16</th>
<th>1/8</th>
<th>1/16</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8</td>
<td>1/4</td>
<td>1/8</td>
<td></td>
</tr>
<tr>
<td>1/16</td>
<td>1/8</td>
<td>1/16</td>
<td></td>
</tr>
</tbody>
</table>

\[\approx \]

\[\begin{array}{ccc}
1/4 \\
1/2 \\
1/4
\end{array} \]

\[+ \]

\[\begin{array}{ccc}
1/4 & 1/2 & 1/4
\end{array} \]

Fewer arithmetic operations
Easier to implement
Markov Localization in Grid Map
Grid-based Localization
Mathematical Description

- Set of weighted samples

\[S = \left\{ \left(s[i], w[i] \right) \mid i = 1, \ldots, N \right\} \]

State hypothesis Importance weight

- The samples represent the posterior

\[p(x) = \sum_{i=1}^{N} w_i \cdot \delta_{s[i]}(x) \]
Particle sets can be used to approximate functions.

The more particles fall into an interval, the higher the probability of that interval.

How to draw samples from a function/distribution?
Let us assume that $f(x) < 1$ for all x

Sample x from a uniform distribution

Sample c from $[0,1]$

If $f(x) > c$ keep the sample

Otherwise reject the sample
Importance Sampling Principle

- We can even use a different distribution g to generate samples from f.
- By introducing an importance weight w, we can account for the “differences between g and $f”$.

 \[w = \frac{f}{g} \]

- f is often called target.
- g is often called proposal.
- Pre-condition: \(f(x) > 0 \implies g(x) > 0 \)
Importance Sampling with Resampling: Landmark Detection Example
Distributions
Wanted: samples distributed according to
\[p(x \mid z_1, z_2, z_3) \]
This is Easy!

We can draw samples from $p(x|z_l)$ by adding noise to the detection parameters.
Importance Sampling

Target distribution \(f : p(x \mid z_1, z_2, \ldots, z_n) = \frac{\prod_{k} p(z_k \mid x) \cdot p(x)}{p(z_1, z_2, \ldots, z_n)} \)

Sampling distribution \(g : p(x \mid z_l) = \frac{p(z_l \mid x) \cdot p(x)}{p(z_l)} \)

Importance weights \(w : \frac{f}{g} = \frac{p(x \mid z_1, z_2, \ldots, z_n)}{p(x \mid z_l)} = \frac{p(z_l) \prod_{k \neq l} p(z_k \mid x)}{p(z_1, z_2, \ldots, z_n)} \)
Importance Sampling with Resampling

Weighted samples

After resampling
Particle Filters
Sensor Information: Importance Sampling

\[
Bel(x) \leftarrow \alpha \ p(z \mid x) \ Bel^{-}(x)
\]

\[
w \leftarrow \frac{\alpha \ p(z \mid x) \ Bel^{-}(x)}{Bel^{-}(x)} = \alpha \ p(z \mid x)
\]
Robot Motion

\[Bel^{-}(x) \leftarrow \int p(x \mid u, x') Bel(x') \, dx' \]
Sensor Information: Importance Sampling

\[
\begin{align*}
Bel(x) & \leftarrow \alpha \ p(z \mid x) \ Bel^{-}(x) \\
w & \leftarrow \frac{\alpha \ p(z \mid x) \ Bel^{-}(x)}{Bel^{-}(x)} = \alpha \ p(z \mid x)
\end{align*}
\]
Robot Motion

\[Bel^-(x) \leftarrow \int p(x | u, x') Bel(x') \, dx' \]
Particle Filter Algorithm

- Sample the next generation for particles using the proposal distribution

- Compute the importance weights:
 \[
 \text{weight} = \frac{\text{target distribution}}{\text{proposal distribution}}
 \]

- Resampling: “Replace unlikely samples by more likely ones”
Particle Filter Algorithm

1. Algorithm \texttt{particle_filter}(M_{t-1}, u_{t-1}, y_t):
2. \(M_t = \emptyset, \quad \eta = 0 \)
3. \textbf{For} \(i = 1 \ldots n \) \hspace{1cm} \textit{Generate new samples}
4. \quad \text{Sample index } j(i) \text{ from the discrete distribution given by } M_{t-1}
5. \quad \text{Sample } x_t^i \text{ from } p(x_t | x_{t-1}, u_{t-1}) \text{ using } x_{t-1}^{j(i)} \text{ and } u_{t-1}
6. \quad w_t^i = p(y_t | x_t^i) \hspace{1cm} \textit{Compute importance weight}
7. \quad \eta = \eta + w_t^i \hspace{1cm} \textit{Update normalization factor}
8. \quad M_t = M_t \cup \{< x_t^i, w_t^i >\} \hspace{1cm} \textit{Insert}
9. \textbf{For} \(i = 1 \ldots n \)
10. \quad w_t^i = w_t^i / \eta \hspace{1cm} \textit{Normalize weights}
11. RESAMPLE!!!
Particle Filter Algorithm

\[
Bel \left(x_t \right) = \eta \, p(z_t | x_t) \int p(x_t | x_{t-1}, u_{t-1}) \, Bel \left(x_{t-1} \right) \, dx_{t-1}
\]

- Draw \(x_{t-1}^i \) from \(Bel(x_{t-1}) \)
- Draw \(x_t^i \) from \(p(x_t | x_{t-1}^i, u_{t-1}) \)
- Importance factor for \(x_t^i \):

\[
w_t^i = \frac{\text{target distribution}}{\text{proposaldistribution}} = \frac{\eta \, p(z_t | x_t) \, p(x_t | x_{t-1}, u_{t-1}) \, Bel \left(x_{t-1} \right)}{p(x_t | x_{t-1}, u_{t-1}) \, Bel \left(x_{t-1} \right)} \propto p(z_t | x_t)
\]
Resampling

- **Given**: Set S of weighted samples.

- **Wanted**: Random sample, where the probability of drawing x_i is given by w_i.

- Typically done n times with replacement to generate new sample set S'.
Resampling

Roulette wheel
Binary search, $n \log n$

Stochastic universal sampling
Systematic resampling
Linear time complexity
Easy to implement, low variance
Resampling Algorithm

1. Algorithm systematic_resampling\((S, n)\):

2. \(S' = \emptyset, c_1 = w^1\)
3. For \(i = 2 \ldots n\) \hspace{1cm} Generate cdf
4. \(c_i = c_{i-1} + w^i\)
5. \(u_1 \sim U[0, n^{-1}], i = 1\) \hspace{1cm} Initialize threshold
6. For \(j = 1 \ldots n\) \hspace{1cm} Draw samples ...
7. While \((u_j > c_i)\) \hspace{1cm} Skip until next threshold reached
8. \(i = i + 1\)
9. \(S' = S' \cup \{< x^i, n^{-1} >\}\) \hspace{1cm} Insert
10. \(u_{j+1} = u_j + n^{-1}\) \hspace{1cm} Increment threshold
11. Return \(S'\)

Also called stochastic universal sampling
Mobile Robot Localization

- Each particle is a potential pose of the robot

- Proposal distribution is the motion model of the robot (prediction step)

- The observation model is used to compute the importance weight (correction step)
Motion Model

Start

10 meters
Proximity Sensor Model

Laser sensor

Sonar sensor
Initial Distribution
After Incorporating Ten Ultrasound Scans
After Incorporating 65 Ultrasound Scans
Estimated Path
Using Ceiling Maps for Localization
Vision-based Localization

\[P(z|x) \]

\[h(x) \]
Under a Light

Measurement z: $P(z|x)$:
Next to a Light

Measurement z: $P(z|x)$:
Elsewhere

Measurement z: $P(z|x)$:
Global Localization Using Vision
Summary – Particle Filters

- Particle filters are an implementation of recursive Bayesian filtering
- They represent the posterior by a set of weighted samples
- They can model non-Gaussian distributions
- Proposal to draw new samples
- Weight to account for the differences between the proposal and the target
- Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap filter
Summary – Monte Carlo Localization

- In the context of localization, the particles are propagated according to the motion model.
- They are then weighted according to the likelihood of the observations.
- In a re-sampling step, new particles are drawn with a probability proportional to the likelihood of the observation.