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Abstract— In this paper, we present a biomechanical model
capable of generating six-DoF trajectories of a swimming dol-
phin. Our model attempts to closely emulate an actual surfacing
and diving dolphin. The degree of biomechanical complexity of
our model stands as a reasonable compromise between a com-
plicated flexible multi-link body and an overly-simplified point-
mass. We constructed our model through analyzing previously
reported results and statistics on hydrodynamics, kinematics,
maneuverability and propulsive efficiency of bottlenose dolphins
observed during their surface-and-dive, porpoising and foraging
behaviors. The results of our model’s computer simulations
match the previous reports on the dolphins’ buoyancy, depth
profiles, and speeds during ascent, descent, and porpoising
activities.

I. INTRODUCTION

As inhabitants of a large part of temperate and tropical
waters all over the world, bottlenose dolphins (Tursiops
truncatus, Tursiops aduncus and Tursiops australis) emanate
as the most extensively studied cetacean [1], [2]. Studies
on their hydrodynamics, kinematics, maneuverability, be-
havior, power output and propulsive efficiency project their
high performance swimming capabilities which progressively
evolved and warranted their survival among a large number
of competitive aquatic mammals and sharks. Moreover, re-
search on the dolphin’s cognition [3], migration [4], foraging
strategies [5], [6], echolocation [7] and social behaviors [8]
suggest that they socialize, particularly within their species,
and cherish a reasonable level of intelligence.

We analyzed the results and statistics reported in some
of these studies and, based on our analysis, constructed a
vectorized six-DoF biomechanical model for the swimming
dynamics of a dolphin. The degree of complexity of our
biomechanical model stands as a reasonable compromise be-
tween a complicated flexible multi-link body and an overly-
simplified point-mass. Although we assumed the dolphin
body as rigid, we did incorporate body’s moment of inertia;
the roll, pitch and yaw torques; and the viscous torque.
Additionally, considering the streamlined shape of the dol-
phin’s body [9], the coefficient of viscous drag for transverse
(sideways) motion had to be greater than the coefficient for
longitudinal (forward) motion. We also modeled the change
in buoyancy of the dolphin body as its inflated lungs collapse
at greater depths [10]. So overall, we purposefully modeled
the dolphin biomechanics in a way that avoids complex and
long computations of real-time dolphin trajectories. In the
end, we applied our model to simulate the surface-and-dive
activity of a dolphin in 3D. Eventually, we plan to employ
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our simulator as a platform for testing vision- and biosonar-
based dolphin-tracking techniques. Our simulation can also
be employed to examine the physical phenomena that are
hard to observe or measure.

II. METHODS

A. Overall Dynamic Model

1) Configuration Space: We modeled the dolphin’s body
as a rigid prolate spheroid [11], with l and w as lengths
of major and minor axes respectively. The configuration of
the dolphin can be specified in two coordinate frames: the
world frame WOxyz and the body-attached frame (or body-
frame) BOxyz. In the world frame, the vector x = [x y z]T

represents position of the center of mass of the spheroid in
3D, and the vector θ = [ψ θ φ]T accumulates the variation
in local roll, pitch and yaw angles of the spheroid. Hence,
the overall configuration q(x, y, z, ψ, θ, φ) of the dolphin
constitutes R3 × SO(3). Vectors r̂ and ŝ in the world
frame respectively represent dolphin model’s head-direction
[1 0 0]T and dorsal vector [0 0 1]T of the body frame. These
vectors can be varied by applying a set of local roll, pitch
and yaw rotations. After applying to r̂: first a roll of ∆ψ
radians about the body x-axis, then a pitch of ∆θ radians
followed by a a yaw of ∆φ radians about the body y- and
z-axes respectively, we obtain the new head-direction

r̂new = W
B R (Rx,∆ψRy,∆θRz,∆φ) B

WR r̂, (1)

where the matrix B
WR transforms r̂ from the world frame to

the body frame [12].
2) Overview of the Modeling Technique: In this paper, we

modeled the biomechanics of a dolphin body to simulate its
surface-and-dive activity. As mammals, the dolphins cannot
spend an extensive amount of time under water; they need
to ‘surface’ (emerge out of the water surface for inspiration)
regularly to cater for their body’s oxygen requirements [9].
After surfacing, they dive back into the water and carry on
their underwater activities with the new oxygen reserve. Our
dolphin model emulates this behavior by ascending to the
surface, diving back into the water, and then descending
to a certain depth. These ascent and descent performances
are driven by a particular path-plan whose phases are trig-
gered by sensory information such as awareness of the
current orientation, position, and speed of the model. A
successful execution of the path-plan requires tracking the
reference orientations (r̂ref, ŝref) and reference speed (vref).
As shown in the block diagram in Fig. 1, the translation
and orientation controllers take r̂ref, ŝref and vref as inputs,
and return appropriate thrust (h) and torque (τ ) vectors.
The vector h (with magnitude h) acts as forcing function



Fig. 1: The block diagram of the overall modeling technique.

of the nonlinear differential equation for translation, while
τ drives the nonlinear orientational differential equation.
Solving these differential equations yields an overall six-DoF
real-time trajectory of the dolphin model in x and θ.

B. Biomechanical Model

1) Translational Locomotion: While swimming, body of
a dolphin experiences several forces such as gravity, drags,
buoyant force, and self-generated thrust and lift. Equating
the sum of all these external and internal forces to the net
force on the body gives the translational differential equation
of the system,

Mẍ = fD(ẋ,x) + fB(x) + h(t), (2)

where M = W
B R BM, BM11 = BM22 = BM33 = m,

and BMij = 0 for i 6= j, fD is the drag force vector,
fB is the buoyancy vector (combined effect of the gravity
and the buoyant force), and h is the sum of thrust and lift
vectors which drive the differential equation and provide the
propulsion required for swimming. For fD, we mathemati-
cally analyzed the speed-drag and speed-power relationships
reported in the literature about experiments on gliding [10]
and actively swimming dolphins [13], and constructed fD as

fD(ẋ,x, t) = −σ(z)γ
( z
w

)
||ẋ||2 (W

B R C(t) B
WR) ˆ̇x. (3)

The sigmoid function σ(z) = 1
exp (εz)+1 (see Table I for

numerical values of the modeling parameters) smoothly
activates or inhibits the drag force across the boundaries of
media (water and air, with water surface at z = 0). The
function γ provides a drag-augmentation due to the influence
of water surface [13], [14], [15], [16], and is given by

γ
( z
w

)
=

{
5 for − z

w = 0.5,
8z
5w + 29

5 for 0.5 < − z
w ≤ 3,

1 otherwise,

where variation of γ in the mid-range 0.5 < − z
w ≤ 3 is

assumed to maintain continuity with changing depth. The
matrix C is a 3 × 3 tensor for coefficients of drag in the
body frame, for which, C(1, 1) = 4.15β(t) for h(t) =
0 and C(1, 1) = 26.25 otherwise, C(2, 2) = C(3, 3) =
ξC(1, 1), and C(i, j) = 0 for i 6= j. The function β
increases the coefficient of drag against longitudinal motion,
providing a braking mechanism. The parameter ξ raises the
drag force against the transverse motion of the body. To
calculate the transverse drag coefficient, we used a simplified
model in which we assumed: the front of the dolphin as a
flat circular plate with diameter w, and the side of its body
as a flat elliptical plate with length l and width w. Using

this simplification, the ratio between the longitudinal and
transverse components of the drag turns out as the ratio of the
surface areas of these elliptical and circular plates, resulting
in ξ = l/w. The buoyancy vector, i.e. sum of buoyant force
and weight vectors, is given by

fB(x) = −σ(z)ρwV (z)g +mg, (4)

where ρw is density of water, g = [0 0 − 9.81]T , and the
volume V of the dolphin varies with a change in external
pressure as the water depth varies. From [10],

V (z) =

{
Vlungs
1−0.1z + Vbody for z < 0,
Vlungs + Vbody otherwise,

(5)

where Vlungs is the volume of lungs at the atmospheric
pressure, and Vbody is the volume of a fully deflated body
of a dolphin.

Dolphins have non-rigid elastic bodies allowing their
flukes to oscillate dorsoventrally. Such fluke strokes pro-
duce a lift that is directed forward and upward during
a downstroke, whereas forward and downward during an
upstroke. The component of this lift directed towards the
head-direction provides most of the forward thrust [13]. But
for our purpose of tracking, we did not need to model the
dolphin’s body as elastic or multi-link. So to avoid unneces-
sary complications, we modeled the dolphin’s body as rigid
and finless. Consequently, the body of the model cannot
oscillate its fluke to produce lift and forward propulsion. In
our modeling technique, h is produced directly as an output
of the thrust controller, and in turn, drives the translational
differential equation. It can be represented as h = hrr̂+hsŝ,
where the components hr and hs provide forward propulsion
and dorsal lift respectively.

2) Maneuverability: Defined as the animal’s ability to
turn in a confined space [17], maneuverability is measured
in terms of body-length specific minimum turning radius
(radius/length) and maximum turning rates, which are the
indices of maneuverability in space and time respectively
[5], [18], [19]. We will use the bounds on these indices
of the foraging bottlenose dolphins as the bounds on our
dolphin model’s maneuverability because foraging dolphins
need to exhibit a maximum maneuverability performance to
compete with the superior maneuverability of their elusive
prey [5], [19]. Dolphins can turn their bodies as well as
perform complex barrel-roll maneuvers [20], performing
rotations about the three orthogonal axes [9] of their bodies
– incorporated in our model as local roll, pitch and yaw.
Dolphins can employ drag- and lift-based maneuverability
mechanisms [13] that provide torque and centripetal force
for body rotation and turning. Because we modeled the
dolphin body as rigid and fin-less, we generate the torque τ
directly from our maneuverability (or orientation) controller.
Equating the net torque on the body to the sum of τ and the
viscous torque τD leads to the differential equation

Λθ̈ = τD(θ̇) + τ (t), (6)

where Λ is the moment of inertia tensor for a prolate
spheroid with the axes of rotation passing through its center



of mass; Λ11 = 2
5mw

2, Λ22 = Λ33 = 1
5m(l2 + w2), and

Λij = 0 for i 6= j [21]. The vector τ drives the differential
equation and is computed from the maneuverability con-
troller described in section II-C.2. As an additional remark,
we did not directly couple (6) and (2) to avoid any futile
complications between maneuverability and translation.

C. Control

A certain speed of the dolphin model is maintained
through an appropriate h, the output of the thrust controller.
The orientation is controlled by tracking reference r̂ and ŝ
through a controller that returns τ . These controllers may not
reflect the dolphin’s actual motor controls; they just serve as
adequate surrogates to emulate reference tracking.

1) Thrust Control: Dolphins have been observed to main-
tain constant speeds under water, specific to certain activities
[9], [10], [22]. To model such a regulation, we implemented
a control for achieving a reference speed vref. From Newton’s
Second Law of motion, the magnitude of the thrust vector
h = maout. The output aout of the controller at a particular
time instance represents the model’s target acceleration,
and is calculated as the output of the PID controller with
parameters kp, ki and kd. But aout can become unbounded.
So, we determined the numerical value of maximum dolphin
acceleration from [23], and we could not find in the literature
any evidence for their backwards thrust generation. Hence,
we limited aout in the range 0 ≤ aout ≤ amax. Then building
upon our modeling strategy as discussed at the end of
section II-B.1, we ignored the transverse component hsŝ of
h because we can generate the desired dolphin trajectories
without it. Therefore, h = hr̂, the forcing function of the
differential equation (2).

At greater depths, the dolphin model may lose control
over its speed due to smaller buoyant force acting against
the gravity. To avoid similar loss of control, dolphins apply
different braking mechanisms such as raising their flukes or
extending their appendages [9]. Using a drag augmentation
factor of 11.5 observed by Skrovan et al. when a dolphin
raised its fluke [10], the braking coefficient β can be imple-
mented as a sigmoid function of time, given by

β(t, t0) =

{
23

exp (−ζ(t−t0))+1 − 11.5 for ė > 0, t ≥ t0,
1 otherwise,

(7)
where ζ is the activation rate, t0 is the time instance when
brakes are applied, and e = vref − v.

2) Maneuverability Control: To cause a change in the
orientation θ of the model, we need a controller that takes a
reference θref as input, and returns the torque τ required to
track the reference, where θref = [∆ψref ∆θref ∆φref]

T . We
devised a technique to calculate θref for tracking a reference
orientation of the model, specified by r̂ref and ŝref. To head
in a new direction, the dolphin model must orient its head-
direction towards r̂ref, which may be available directly from
a path-plan. For the case where the model needs to track
a target at a point with position vector p in the world
frame, r̂ref can be calculated from r̂ref = p− x. This means
that in the body-frame, Br̂ must align with the vector Br̂ref

given by the vector Bu = B
WRr̂ref. Now to align Br̂ with

Bu, the required changes in the angles of elevation and
azimuth must be calculated, which are the local pitch ∆θref
and local yaw ∆φref rotations respectively, calculated as
∆θref = − tan−1

(
Buz/

√
(Bux)2 + (Buy)2

)
, and ∆φref =

tan−1(Buy/
Bux). For ∆ψref component, we need to first

decide a criterion for setting a reference ŝ direction. In the
literature, we could not find any evidence of upside down
swimming of the bottlenose dolphins. So for our model,
such an orientation can be avoided by ensuring that the inner
product of ŝ and positive z-direction is never negative. This
can be implemented just through appropriate roll maneuvers.
Now with ŝref = [0 0 1]T , a new Bu is calculated. But only
the roll component of the required overall maneuver is picked
and placed as ∆ψref = − tan−1(Buy/

Buz).
The maneuverability controller takes θref as input, and

returns a torque pseudo-vector τ . Choosing τ = Λθ̈out, and
applying feedback linearization with θ̈out = Λ−1(τD + µ),
(6) reduces to θ̈ = µ, where the vector µ represents the output
of a PID controller with parameter matrices Kp, Ki and Kd,
and input vector ε = θref − θ. It has been reported previ-
ously that the turning force on a dolphin’s body is directly
proportional to the square of its linear speed [18]. Hence,
in our model, we modify the pitch and yaw components
of µ (µθ and µφ) by multiplying them with v2 because
pitch and yaw displacements combine to produce an overall
turning. While turning towards a reference orientation as well
as swimming at a non-zero speed, the model will follow a
curved path. Realistically, the angular speed for turning along
such a curve must be bounded, which is corroborated by the
past research on maneuverability of dolphins [5]. This can be
ensured through applying appropriate bounds on τ . Let the
bounds on the angular speeds be ψ̇max for rolling and ωmax for
turning. Rolling and turning at these bounds on angular speed
indicate that the generated torque adequately counters the
viscous torque experienced at these bounds. So, we specified
the thresholds on rolling and turning components of τ as
magnitudes of viscous torques against rolling and turning at
ψ̇max and ωmax respectively.

Eventually, the outputs from the thrust and maneuverabil-
ity controllers drive the differential equations (2) and (6)
respectively.

D. Swimming Behavior Model

The swimming behavior of dolphins is adapted to maxi-
mize their locomotor efficiency [24]. They switch between
stroking and gliding to optimize their locomotor costs,
classified as burst-and-glide (or burst-and-coast) mode of
swimming [10], [23], [25]. In this mode, a dolphin achieves
the speed vmax through rapid stroking (burst) and then glides
(or coasts) for some time until decelerating down to the speed
vmin. It carries on stroking and gliding in this fashion to
minimize the locomotion costs. Our model exhibits the burst-
and-glide mode of swimming through alternatingly tracking
vmin and vmax. If the speed of the dolphin model nears vmin,
it starts active swimming with thrust magnitude h > 0. But
as soon as the speed rises to vmax, h is set to zero so that



the model glides and decelerates down to vmin through the
effect of incorporated drags.

1) Surface-and-dive Activity: As a mammal, ‘surfacing’
(approaching the water surface for inspiration) is vital for
a dolphin. Based on the observations reported in [10] and
[23], we divided the whole surfacing event into four phases.
In phase 1, if the dolphin model is below the water surface,
it orients its head-direction r̂ towards the world positive z-
axis, and ascends towards the surface in a burst-and-glide
mode (vamin, vamax). On rising up to a depth z1, phase 2
begins in which the model’s reference orientation is set so
that the body emerges out of the water at an angle α1, and
the reference speed is set to zero to cause a deceleration
that prevents the model from leaping too high into the air.
When the model rises to a depth z2 just before emerging
out, phase 3 begins and it starts adjusting its body for a dive
back into the water. After leaping back in, depth z3 marks
the beginning of the fourth phase in which the world frame’s
negative z-axis is set as the reference orientation. Now, the
descent begins and the model swims in a burst-and-glide
fashion (vdmin, vdmax).

2) Porpoising: We simulated the porpoising activity as
an application of the surface-and-dive modeling. According
to our porpoising model, which is partly inspired from the
research in [23], it is a four-phase activity. As the first phase
begins, the dolphin model swims actively near and parallel
to the water surface, just below a depth zp. On achieving
the reference speed vf , phase 2 begins and the model orients
itself to leap out, making an angle α1 with the water surface.
After leaping out, phase 3 begins in which the models orients
to leap back into the water, at an angle α2. The reference
speed is now set to vi, which is less than vf because the
model should now glide to slow down. As soon as the model
gets below zp, phase 4 begins and the model orients itself
parallel to the water surface and continues gliding. When the
speed slows down to vi, phase 1 begins again. In this way,
the dolphin model carries on porpoising periodically.

III. RESULTS

Using the values of the modeling parameters given in
Table I, we simulated our biomechanic model in Matlab
by numerically solving the differential equations (2) and
(6) through Euler’s approximation. The solutions of these
equations are trajectories in x(t) and θ(t) respectively.
Computing one hour of real-time simulation through our
code in Matlab took roughly 15 minutes.

A. Buoyancy
The dolphin model experiences an upward force beneath

the water surface above a depth of roughly 16 m, and a
downward force below this depth. This is a consequence of
modeling by (5) the changing body-volume with changing
depth, as proposed by Skrovan et al. [10]. They observed
that a 177 kg dolphin experienced net buoyancy of +21.0
N at 5.5 m depth and −22.1 N at a depth of 67.5 m. Our
modeling technique based on their proposition resulted in a
net buoyancy of +24.3 N at 5.5 m and −25.7 N at 67.5 m
– for a 170.9 kg model with a lung volume of 0.00851 m3.

TABLE I: Numerical values of the modeling parameters.
Values were assumed that could not be found in the literature.

Parameter Value Reference
l, w, ξ 2, 0.4, 5
Vlungs, Vbody 0.00851, 0.1676 [10]
ρw, ρd (body density) 1000, 1020
m = 1

6
πρdlw

2 170.9
amax, ψ̇max, ωmax 6.54, 6.28, 23.95 [23], [5]
(vamin v

a
max), (vdmin v

d
max) (1.2 1.9), (1.8 2.2) [10]

vi, vf 4.92, 6.56 [23]
ε, ζ 160, 2
kp, ki, kd 80, 0.01, 0
Kd,Kp, Ki 40I, 0.25K2

d, 0
z1, z2, z3, zp −1,−0.2,−1,−2
α1, α2 39◦, 39◦ [23]

B. Ascent and Descent

Fig. 2 shows the 3D spatial plot of an ascent, followed by
surfacing and a descent to roughly 25 m. Variation in speed
of the dolphin model for this trajectory is shown Fig. 3a. Fig.
3b shows the cumulative roll, pitch and yaw displacements
over time, plotted along the tracking errors. We can observe
that the controllers successfully track the references, and the
tracking errors decay to zero.

Fig. 4a shows the depth profile and speed variation of the
dolphin model for a deep descent followed by an immedi-
ate ascent in a single trajectory. Graph A shows that the
dolphin model descends down to a depth of below 100 m
and immediately begins to ascend towards the surface for
inspiration, whereas graph B shows the speed variation in
this trajectory. These graphs can be compared to the plots
shown in Fig. 4b which depict an actual trajectory of a
dolphin as reported in [10]. We can observe that after the
descent, the dolphin stations for roughly 20 s below 110 m
and then begins its ascent for surfacing. In our simulated
trajectory, modeling the descent swimming mode as burst-
and-glide causes the speed of the dolphin model to vary
between 1.2 and 1.9 ms−1. In the simulation, we observed
that even if the model glides down below 60 m within
these limits, the absence of a braking mechanism causes its
speed to increase indefinitely – indicating a loss of control
over the speed. This is the consequence of dolphin’s weight
overwhelming its body’s buoyancy. So, between 40 and 80
s, the dolphin model needed to brake slightly to decelerate
down to the speed of 1.2 ms−1. Similar deceleration variation
can be seen for the actual dolphin in the graph B of Fig.
4b. But in [10], researchers reported that the dolphin glided
during this interval; they may have overlooked its attempts
at braking. At the end of descent at about 80 s in Fig. 4a
graph A, the dolphin model needed to reorient itself to start
ascending. So, it decelerated sharply to a speed below 0.5
ms−1, preventing itself from descending any further. This
sharp deceleration is similar to the deceleration exhibited by
the real dolphin in Fig. 4b graph A near 80 s, after which it
stationed for about 20 s before accelerating rapidly to a speed
of 2 ms−1. At this point, the dolphin began to ascend with
its speed oscillating about 2 ms−1. Fig. 4a shows that our
model also applied a rapid acceleration at the start of ascent



Fig. 2: The 3D trajectory of an ascent, a surfacing event, and
a subsequent descent of the dolphin model.

and then varied its speed about 2 ms−1 while ascending.
Our modeled speed variation is more rapid because we did
not incorporate different stroking modes such as small- and
medium-amplitude strokes – usually employed to generate
small accelerations or to maintain smaller speeds [10].

C. Porpoising

Fig. 5a shows the spatial plot of a porpoising leap that we
simulated, while Fig. 5b shows the variation in speed during
this leap. Referring to the three-phase model of porpoising
proposed in [23], at point A phase 1 begins where the model
starts stroking to accelerate up to a speed close to 7 ms−1.
Although it continuously strokes while moving from A to B,
the augmented drag near the water surface counters the thrust
and initially makes the model decelerate. But just before
leaping, the thrust wins over and causes the model to leap
out at a speed of roughly 6.6 ms−1. Then phase 2 begins, and
the conservation between gravitational potential and kinetic
energies makes the model return to the water surface at C
with the same speed that was at B [23]. Leaping back into
the water marks the beginning of phase 3 in which the model
glides and decelerates to below 5 ms−1. It has been observed
that the leaps are interspersed by relatively long swimming
bouts, represented by sections CA and AB, about twice the
leap length [23]. From our data of 250 simulated leaps, the
average ratio of a horizontal distance covered under the water
surface between two leaps, to the leap length, was calculated

Fig. 3: (a) Variation in speed of the dolphin model for
trajectory shown in Fig. 2. Dashed-line plot in red shows
the reference speed. (b) Variation in accumulating roll, pitch
and yaw displacements of the dolphin model for trajectory
shown in Fig. 2. Dashed-line plots in red represent tracking
errors.

Fig. 4: (a) Graphs for a simulated trajectory of the dolphin
model, depicting variation in depth (A) and speed (B) for a
descent and a subsequent ascent. (b) Graphs for a real dol-
phin trajectory as reported by Skrovan et al. [10], depicting
variation in depth (A) and speed (B) for a descent and a
subsequent ascent.

as 2.7; close to the approximate factor of 2.

IV. DISCUSSION

In this paper, we presented a biomechanical model of
a bottlenose dolphin, assuming the body of the dolphin
as a rigid spheroid, and simulated its surface-and-dive and
porpoising activities. The model for translation incorporates
the three-dimensional viscous drag acting on the dolphin’s
body. Many researchers have tried to deduce a relationship
between drag force and linear speed of a dolphin’s body.
Skrovan et al. [10] has reported the relationship between
drag force’s magnitude fD and speed v of a gliding dolphin
as fD = 4.15v2. But for an actively swimming dolphin,
we derived (see Appendix I) the drag-speed relationship
as fD = 26.25v2, which is based on Fish’s least-square
regression equation [13].

Maresh et al. observed the dolphins’ ability to turn with
a maximum turning rate of 1372.0◦s−1 (23.946 rads−1) [5].
This turning rate ω is defined about the center of the turning
circle. However, we turn our model by rotating its body about
its center of mass with turning rates θ̇ (for pitch) and φ̇ (for
yaw) at a non-zero speed. So we must establish a mapping

Fig. 5: (a) Trajectory of a porpoising dolphin model leaping
in the y-z plane. Line z = 0 represents the water-air
boundary. (b) Variation in speed of the leaping dolphin model
shown in (a).



between ω and θ̇ (and φ̇). For a range of realistic [5], [9]
magnitudes of thrusts (h) and turning rates (θ̇), we computed
the maximum percentage difference between ω and θ̇, at
constant speeds as 0.53% – which is insignificant. Therefore,
for planar turns we can assume that ω = θ̇. In 3D, both pitch
and yaw rotations cause an overall turning of the model’s
body, implying that ω must equal an overall angular speed
in pitch and yaw. But for small linear speeds close to zero,
ω may not be equal to θ̇ because a large torque can rotate
the body about its center of mass without making it execute
a turn. So to compensate for it, we set the turning force
as directly proportional to the square of the linear velocity,
which is indeed a real phenomenon [18].

In order to change the thrust magnitude, dolphins vary
their swim-stroke amplitudes. To accelerate up to a certain
speed, the amplitude may transition from large to medium,
and eventually die down to small values [10], indicating a
gradual decrease in the applied thrust until achieving the
target speed. During the ascent stage of a deep dive, dolphins
need to counter the gravity through a higher thrust. Hence, to
accelerate or to maintain a certain speed, they need to stroke
at high or medium amplitude for much longer distances as
compared to the descent stage. In our model, we did not
incorporate the effects of varying magnitudes of stroking.
This results in a burst of large thrust at the beginning of an
acceleration, representing a large amplitude thrust. Moreover,
because medium-amplitude stroking is not used to maintain a
certain speed, the percentage time spent in active swimming
during ascent stages of our simulation was different from
that reported by Skrovan et al. [10].

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a compromised model for the
biomechanics of a bottlenose dolphin, assuming its body
as a rigid spheroid, and simulated the surface-and-dive and
the porpoising activities. In future, we will incorporate in
our model the dolphin’s bioacoustics and other behaviors
(migration, prey-search and foraging etc.). We plan to im-
plement these behaviors through behavior-based modeling
and control.
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APPENDIX I: CALCULATIONS

Fish reports a least square regression as P = 28.87v2.91

[13], between a speed v of an actively swimming dolphin
and the thrust power P required to maintain that v. This
power is the rate of work done by the dolphin against the
drag force fD that points exactly opposite to the direction
of speed and does not vary at constant v. Hence, from the
relationship P = fDv, we can deduce that fD = 28.87v1.91.
For simplicity, we rounded up the exponent of v to 2 and
compensated for it by decreasing the coefficient by a factor
of 1.1 ( v2

v1.91 = v0.09 ' 1.1 at average dolphin swimming
speeds [22]). Finally, fD = 26.25v2.
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